Main Article Content
Abstract
Global economic development has led to the high complexity of society's needs. Financial institutions are here to provide facilities to meet the increasingly complex needs of society. However, the existence of problem loans can be a serious threat so classification techniques in data mining are used to overcome this problem. This research develops a model that can predict customers' ability to make credit payments so that financial institutions can avoid problematic credit. In this research, the SMOTE resampling technique is used to see the effect of sampling in dealing with class imbalance and conducting credit assessments. The research results show that the model built using SMOTE has better AUC than the model without SMOTE. From the two machine learning algorithms, logistic regression and random forest, the results show that the random forest model with SMOTE has the best performance with an accuracy value of 90%, precision of 92%, recall of 88%, F1-score of 90%, and AUC value of 0.97. Based on the best model, ten important features were obtained that influence the process of assessing credit repayment capabilities, namely the normalized score from external data sources, the period for changing customer numbers, the number of previous installment payments, the customer's age, registration time, the period for applying for credit at the credit bureau, the period for changing identity documents, the time for updating information at the credit bureau, and the length of time the customer has worked. In addition, this research produces visualizations via dashboards that can be used to improve the process of assessing credit repayment capabilities.
Keywords: Prediction; Logistic Regression; Random Forest; Credit; Repayment Capabilities.
Article Details
Copyright (c) 2024 Titin Yulianti, Amanda Hasna Cahyana, Muhamad Komarudin, Yessi Mulyani, Hery Dian Septama

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Seluruh materi yang terdapat dalam situs ini dilindungi oleh undang-undang. Dipersilahkan mengutip sebagian atau seluruh isi situs web ini sesuai dengan ketentuan yang berlaku.
- Apabila anda menemukan satu atau beberapa artikel yang terdapat dalam Jurnal Pseudocode yang melanggar atau berpotensi melanggar hak cipta yang anda miliki, silahkan laporkan kepada kami, melalui email pada Priciple Contact.
- Aspek legal formal terhadap akses setiap informasi dan artikel yang tercantum dalam situs jurnal ini mengacu pada ketentuan lisensi Creative Commons Atribusi-ShareAlike (CC-BY-SA).
- Semua Informasi yang terdapat di Jurnal Pseudocode bersifat akademik. Jurnal Pseudocode tidak bertanggung jawab terhadap kerugian yang terjadi karana penyalah gunaan informasi dari situs ini.