Main Article Content
Abstract
Free Fire is one of the most popular online games in Indonesia, yet it continues to receive a wide range of user reviews regarding gameplay experiences. These reviews reflect diverse user perceptions, including both praise and criticism, making sentiment analysis essential to understanding user satisfaction. This study aims to classify user sentiments toward Free Fire using a combined dataset collected from the Google Play Store and App Store, and to compare the performance of two text classification algorithms: Naive Bayes and K-Nearest Neighbor (KNN). The data were collected using web scraping techniques and manually labeled by expert validators. Text preprocessing involved cleansing, tokenizing, stopword removal, and stemming, followed by term weighting using the Term Frequency-Inverse Document Frequency (TF-IDF) method. The experimental results show that the Naive Bayes algorithm achieved the highest accuracy of 72.78%, while the KNN algorithm recorded a maximum accuracy of 45.91%. Based on these findings, Naive Bayes is proven to be more effective in classifying user sentiments related to Free Fire. The results of this study are expected to provide constructive insights for developers to improve the quality and user experience of the game.
Article Details
Copyright (c) 2025 Nyoman Dinda Indira Sudiasta Putri, I Made Dendi Maysanjaya, I Made Gede Sunarya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Seluruh materi yang terdapat dalam situs ini dilindungi oleh undang-undang. Dipersilahkan mengutip sebagian atau seluruh isi situs web ini sesuai dengan ketentuan yang berlaku.
- Apabila anda menemukan satu atau beberapa artikel yang terdapat dalam Jurnal Pseudocode yang melanggar atau berpotensi melanggar hak cipta yang anda miliki, silahkan laporkan kepada kami, melalui email pada Priciple Contact.
- Aspek legal formal terhadap akses setiap informasi dan artikel yang tercantum dalam situs jurnal ini mengacu pada ketentuan lisensi Creative Commons Atribusi-ShareAlike (CC-BY-SA).
- Semua Informasi yang terdapat di Jurnal Pseudocode bersifat akademik. Jurnal Pseudocode tidak bertanggung jawab terhadap kerugian yang terjadi karana penyalah gunaan informasi dari situs ini.