Pseudocode https://ejournal.unib.ac.id/pseudocode <p><strong>Pseudocode </strong>is a scientific journal in the information science family that contains the results of informatics research, scientific literature on informatics, and reviews of the development of theories, methods, and applications of informatics engineering science. Pseudocode is published by UNIB Press, Universitas Bengkulu, Indonesia. Editors invite researchers, practitioners, and students to submit article manuscripts in the field of informatics engineering. Pseudocode is published 2 (two) times a year in February and September with p-ISSN 2355-5920 e-ISSN 2655-1845.</p> <p><strong>Jurnal Pseudocode </strong>is Accredited by the Ministry for Research, Technology and Higher Education (RISTEKDIKTI) in SINTA 4 No. 177/E/KPT/2023 since 15 October 2024. </p> en-US <ol><li>Seluruh materi yang terdapat dalam situs ini dilindungi oleh undang-undang. Dipersilahkan mengutip sebagian atau seluruh isi situs web ini sesuai dengan ketentuan yang berlaku.</li><li>Apabila anda menemukan satu atau beberapa artikel yang terdapat dalam <em><strong>Jurnal Pseudocode</strong></em> yang melanggar atau berpotensi melanggar hak cipta yang anda miliki, silahkan laporkan kepada kami, melalui email pada Priciple Contact.</li><li>Aspek legal formal terhadap akses setiap informasi dan artikel yang tercantum dalam situs jurnal ini mengacu pada ketentuan lisensi <em>Creative Commons Atribusi-ShareAlike </em>(CC-BY-SA).</li><li>Semua Informasi yang terdapat di <em><strong>Jurnal Pseudocode</strong></em> bersifat akademik. <em><strong>Jurnal Pseudocode</strong></em> tidak bertanggung jawab terhadap kerugian yang terjadi karana penyalah gunaan informasi dari situs ini.</li></ol> pseudocode@unib.ac.id (Widhia Oktoeberza KZ, S.T., M.Eng.) widhiakz@unib.ac.id (Widhia Oktoeberza KZ, S.T., M.Eng.) Sat, 19 Jul 2025 09:06:43 +0000 OJS 3.3.0.11 http://blogs.law.harvard.edu/tech/rss 60 Pendekatan Ensemble Learning untuk klasifikasi serangan DDoS https://ejournal.unib.ac.id/pseudocode/article/view/41284 <p><em>This research proposes an ensemble learning approach for classifying Distributed Denial of Service (DDoS) attacks using the CIC-DDoS2019 dataset. DDoS attacks remain a significant threat to network security, necessitating efficient detection methods. We developed an ensemble model combining Random Forest, Gradient Boosting, and AdaBoost classifiers to enhance detection accuracy. Our methodology involves preprocessing the CIC-DDoS2019 dataset, extracting relevant features, and implementing both binary classification (benign vs. attack) and multiclass classification (attack type identification). The experimental results show that our ensemble model achieves an F1-score of 0.9967 for binary classification, with Gradient Boosting performing best among individual models. The multiclass classification reaches an accuracy of 0.8742 in distinguishing between different types of DDoS attacks. This research demonstrates that ensemble learning significantly improves the accuracy and reliability of DDoS attack detection compared to single-model approaches.</em></p> <p><em>Keywords: </em><em>Ensemble learning; DDoS attack; network security; CIC-DDoS2019; machine learning.</em></p> Muhammad Oriza Nurfajri, Guntur Budi Herwanto Copyright (c) 2025 Muhammad Oriza Nurfajri, Guntur Budi Herwanto https://creativecommons.org/licenses/by-sa/4.0 https://ejournal.unib.ac.id/pseudocode/article/view/41284 Sat, 19 Jul 2025 00:00:00 +0000