Main Article Content

Abstract

In this study, a heat exchanger will be designed with the principle of tube-pond, normal water flowing tubes and hot water-filled ponds. This study aims to determine the heat transfer characteristics of glass pipe, copper, and resin coated copper.The materials used in the tube were glass, copper, and resin coated copper, polyester resin of yukalac BTQN 157 and a catalyst of methyl ethyl ketone peroxide. In the test, the water temperature variation in ponds was 70?C, 80?C, and 90?C. At each temperature, the test was carried out by flowing normal water into the tube by varying the discharge by 1lpm, 0.8lpm, 0.6lpm, 0.4lpm, and 0.2lpm. The values for the temperature in and out of the water in the tube are obtained. So that the overall heat transfer coefficient value and its effectiveness can be calculated.The results showed that the higher the discharge, the overall heat transfer coefficient on the tube increased. where the highest value is in the copper tube meterial at 1 lpm discharge, which is at 80?C pond temperature of 1544.163 W / m2?C. While the smallest value of the overall heat transfer coefficient is the glass
material at the time of discharge 0.2 lpm, which is at a temperature of 90?C of 199.5889 W / m2?C

Keywords

Heat exchanger tube pond heat transfer coefficient

Article Details

References

  1. Risano, A.Y.E., Su’di, A and Rendy, D.A.P.
  2. “Perancangan Heat Exchanger Pada
  3. Binary Power Plant Kapasitas 100 KW Yang
  4. Memanfaatkan Uap Sisa PLTP Ulu Belu.”
  5. (September).
  6. Scheiber, J., Ravier, G., Cuenot, N., Genter, A.
  7. “In-Situ Material and Corrosion Studies
  8. at the Soultz-Sous-Forêts ( France ) EGS Site.”
  9. (April): 19–25.
  10. Gunnlaugsson, E., Armannsson, H.,
  11. Thorhallsson, S., Steingrimsson, B. 2014.
  12. “Problems In Geothermal Operation.” : 1–18.
  13. Norton, J.F., Maier, M.,Bakker, W.T. 2010.
  14. “Corrosion of heat exchanger alloys exposed to
  15. a non-equilibrated CO-based sulfidizing
  16. environment at 550?C”. 433: 424–33.
  17. Emmons, E., Shamberger, P.J. 2018. “Corrosive
  18. Effect of Lithium Nitrate Trihydrate on
  19. Common Heat Exchanger
  20. Materials.”(September).
  21. Liu, C., Little, J.A. Henderson, P. J., Ljung, P.
  22. “Corrosion of HR3C heat exchanger alloy
  23. in a biomass fired PF utility boiler.” Materials
  24. and Corrosion 51: 765-773.
  25. Bar-Cohen, A., Rodgers, P., Cevallos,J.G. 2008.
  26. “Application Of Thermally Enhanced
  27. Thermoplastics to Seawater-Cooled LiquidLiquid
  28. Heat Exchangers.” University of
  29. Maryland, College Part, MD, United States of
  30. America.
  31. Yan, J.,Zhou, T.,Masuda, J.,Kuriyagawa, T.
  32. “Modeling high-temperature glass
  33. molding process by coupling heat transfer and
  34. viscous deformation analysis.”Departement of
  35. Nanomechanics, Graduete School of
  36. Engineering, Tohaku university, Japan.
  37. Irvan O. 2016. “Analisa peleburan limbah
  38. plastik jenis polyethylene terphtalate (pet)
  39. menjadi biji plastik melaluipengujian alat
  40. pelebur plastik.” Program Studi Teknik Mesin,
  41. Fakultas Teknik, Universitas Mercu Buana,
  42. Jakarta.
  43. Meilani, H.,Wuryandani, D. 2010.“Potensi
  44. Panas Bumi Sebagai Energi Alternatif
  45. Pengganti Bahan Bakar Fosil untuk Pembangkit
  46. Tenaga Listrik Di Indonesia.”
  47. Bizzy I., Setiadi, R. 2013. “Studi Perhitungan
  48. Alat Penukar Kalor Tipe Shell and Tube
  49. Dengan Program Heat Transfer Research Inc
  50. (HTRI).”Jurusan Teknik Mesin, Fakultas
  51. Teknik, Universitas Sriwijaya.
  52. Holman, J.P. 1991, Perpindahan Kalor, Ed.6,
  53. Jakarta: Erlangga.