Main Article Content

Abstract

Elektroplating tembaga adalah proses pelapisan logam dengan tembaga menggunakan
arus listrik. Untuk mendapatkan lapisan tembaga berkualitas optimal dengan penambahan zat aditif
baik sintetik maupun alami, sangat penting untuk mengontrol pertumbuhan kristal dan distribusi ion
tembaga, sehingga menghasilkan lapisan tembaga dengan kilau yang tinggi, daya lekat yang kuat,
dan ketahanan korosi yang baik. Penambahan PEG, DPS, SPS, IBDGE, PBDGE, Polyquaternium-2,
HEDP dan berbagai ekstrak tumbuhan (kulit bakau, daun jambu biji, daun binahong, kulit buah
kakao) serta gelatin dapat secara signifikan mempengaruhi morfologi, ketebalan, dan sifat khusus
pada lapisan tembaga. Mekanisme kerja aditif melibatkan interaksi kompleks antara aditif, ion
logam, dan permukaan substrat.

Article Details

How to Cite
elwarni, F. maya, Alvin Reagen, M., Wiradimafan, K., & Prima Yudha, S. (2024). Telaah Pustaka Penggunaan Zat Aditif Sintetik dan Ekstrak Tumbuhan pada Pelapisan Tembaga secara Listrik. RAFFLESIA JOURNAL OF NATURAL AND APPLIED SCIENCES, 4(2). https://doi.org/10.33369/rjna.v4i2.39404

References

  1. Sigit, S.; Widodo, G.; Wasito, B.; Basuki, K.T.; Fahrunissa, F. Effect of Current, Time, Feed and Cathode Type on Electroplating Process of Uranium Solution. Urania Jurnal Ilmiah Daur Bahan Bakar Nuklir. 2017, 23(1):11–22. DOI: 10.17146/urania.2017.23.1.3155.
  2. Budiyanto, E.; Setiawan, D.A.; Supriadi, H.; Ridhuan K. Pengaruh Jarak Anoda-Katoda pada Proses Elektroplating Tembaga terhadap Ketebalan Lapisan dan Efisiensi Katoda Baja AISI 1020. Turbo : Jurnal Program Studi Teknik Mesin. 2017, 5(1):21–9, http://dx.doi.org/10.24127/trb.v5i1.115.
  3. Oktavia, N.; Dahlan, D. Elektodeposisi Lapisan Tembaga pada Baja SS-304 dengan Larutan Elektrolit Mengandung Ekstrak Daun Binahong sebagai Inhibitor Korosi Jurnal Fisika Unand. 2024, 13(3):413–9. https://doi.org/10.25077/jfu.13.3.413-419.2024.
  4. Woo, T.G.; Lee, M.H.; Seol, K.W. Effect of Gelatin and Chloride Ions on The Mechanical Properties and Microstructural Evolution of Copper Foil. Journal of Korean Institute of Metals and Materials. 2018, 56(7):518–23. DOI:10.3365/KJMM.2018.56.7.518
  5. Morand, Y. Copper metallization for Advanced IC: Requirements and Technological Solutions. Microelectronic Engineering. 2000, 50(1–4):391–401. https://doi.org/10.1016/S0167-9317(99)00307-X
  6. Zhai, Y.H.; Peng, Y.X.; Hong, Y.; Chen, Y.M.; Zhou. G.Y.; He, W. Synthesis and Evaluation of Organic Additives for Copper Electroplating of Interconnects. Journal of Electrochem. 2023, 29(8). DOI: 10.13208/j.electrochem.2208111
  7. Guo, L.; Li, S.; He, Z.; Fu, Y.; Qiu, F.; Liu. R. Electroplated Copper Additives for Advanced Packaging: A Review. ACS Omega. 2024, 9(19):20637–47. DOI:10.1021/acsomega.4c01707
  8. Jin, Y.; Sun, M.; Mu, D.; Ren, X.; Wang, Q.; Wen, L. Investigation of PEG Adsorption on Copper in Cu2+ Free Solution by SERS and AFM. Electrochim Acta. 2012, 78:459–65. DOI:10.1016/j.electacta.2012.06.039
  9. Xiang, J.; Qin, Z.; Zhang, H.; Qin, R.; Zeng, C.; Zhou D. Influence of Polyethylene Glycol Inhibitors on Properties of Electroplated Copper Layer. Journal of Physics: Conference Series. 2022, 2393(1):1–5. DOI:10.1088/1742-6596/2393/1/012036
  10. Tabakovic, I.; Inturi, V.; Riemer, S. Composition, Structure, Stress, and Coercivity of Electrodeposited Soft Magnetic CoNiFe Films: Thickness and Substrate Dependence. Journal of The Electrochemical Society. 2002, 149(1):C18. DOI:10.1149/1.1421346
  11. Tabakovic, I.; Riemer, S.; Sun, M. Self-Assembled Monolayer of 3-N, N-Dimethylaminodithiocarbamoyl-1-Propanesulfonic Acid (DPS) Used in Electrodeposition of Copper. Journal of The Electrochemical Society. 2013, 160(12):D3197–205. DOI:10.1149/2.034312jes
  12. Vas’ko, V.A.; Tabakovic, I.; Riemer, S.C.; Kief, M.T. Effect of organic additives on structure, resistivity, and room-temperature recrystallization of electrodeposited copper. Microelectronic Engineering. 2004, 75(1):71–7. doi : 10.1016/j.mee.2003.10.008.
  13. Wang, A.Y.; Chen, B.; Fang, L.; Yu, J.J.; Wang, L.M. Influence of Branched Quaternary Ammonium Surfactant Molecules as Levelers for Copper Electroplating from Acidic Sulfate Bath. Electrochimica Acta. 2013, 108:698–706. DOI: http://dx.doi.org/10.1016/j.electacta.2013.07.017
  14. Hai, N.T.M.; Furrer, J.; Barletta, E.; Luedi, N.; Broekmann, P. Copolymers of Imidazole and 1,4-Butandiol Diglycidyl Ether as an Efficient Suppressor Additive for Copper Electroplating. Journal of The Electrochemical Society. 2014, 161(9):D381–7. DOI 10.1149/2.0111409jes
  15. Li, J.; Zhou, G.; Hong, Y.; Wang, C.; He, W.; Wang, S. Copolymer of Pyrrole and 1,4-Butanediol Diglycidyl as an Efficient Additive Leveler for Through-Hole Copper Electroplating. ACS Omega. 2020. 5(10):4868–74. https://doi.org/10.1021/acsomega.9b03691
  16. Chen, B.; Wang, A.; Wu, S.; Wang, L. Polyquaternium-2: A New Leveling Agent for Copper Electroplating from Acidic Sulphate Bath. Electrochemistry. 2016, 84(6):414–9. DOI:10.5796/electrochemistry.84.414.
  17. Hoffmann, T.; Friedel, P.; Harnisch, C.; Häußler, L.; Pospiech, D. Investigation of Thermal Decomposition of Phosphonic Acids. Journal of Analytical and Applied Pyrolysis. 2012, 96:43–53. DOI: http://dx.doi.org/10.1016/j.jaap.2012.03.001
  18. Yan, R.; Gao, X.; He, W.; Chen, T.; Ma, H. 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP)-Zn Complex Thin Films for The Corrosion Protection of Cold-Rolled Steel (CRS). Corrosion Science. 2019, 157:116–25. DOI: https://doi.org/10.1016/j.corsci.2019.05.033
  19. Deluchat, V.; Bollinger, J.C.; Serpaud, B.; Caullet, C. Divalent Cations Speciation with Three Phosphonate Ligands in The Ph-Range of Natural Waters. Talanta. 1997, 44(5):897–907. https://doi.org/10.1016/S0039-9140(96)02136-4.
  20. Li, M.G.; Wei, G.Y.; Li, M.; Wang, J.F.; Chen, L.; Zhao, X.X. Effect of HEDP on Copper Electroplating from Non-Cyanide Alkaline Baths. Surface Engineering. 2014, 30(10):728–34. DOI:10.1179/1743294414Y.0000000256
  21. Gambier, F.; Shah, A.M.; Hussin, M.H.; Mohamad, Ibrahim.; M.N.; Rahim, A.A.; Brosse, N. Condensed Tannins from Mangrove and Grape Pomace as Renewable Corrosion Inhibitors and Wood Adhesive. Journal of Advanced Chemical Engineering. 2018, 8(1). DOI:10.4172/2090-4568.1000182
  22. Lubis, M.F.; Dahlan, D. Sintesis Lapisan Antikorosi Menggunakan Tanin dari Kulit Batang Bakau sebagai Inhibitor. Jurnal Fisika Unand. 2020, 9(2):277–83. https://doi.org/10.25077/jfu.9.2.277-283.2020
  23. Mulyaningsih, N.; Mujiarto, S.; Ubaydillah, G. Pengaruh Daun Jambu Biji sebagai Inhibitor Korosi Alami Rantai Kapal. Journal of Mechanical Engineering. 2019, 3(1):36–42. https://doi.org/10.31002/jom.v3i1.1523
  24. Ngatin, A.; Wulandari, A.F.; Saffanah, A.D.; Suminar, D.R.; Setyaningrum S. Pemanfaatan Ekstrak Daun Jambu Biji sebagai Inhibitor Korosi Baja Paduan dalam Medium Larutan NaCl. Fluida. 2022, 15(2):113–20. DOI:10.25077/jfu.10.4.479-485.2021
  25. Prameswari, A., Dahlan, D. Pemanfaatan Ekstrak Daun Jambu Biji (Psidium juajava) sebagai Inhibitor Korosi Pada Baja. Jurnal Fisika Unand. 2021. 10(4):479–85. https://doi.org/10.25077/jfu.10.4.479-485.2021
  26. Tissos, N.P.; Dahlan, D.; Yetri, Y.; Synthesis of Cuprum (Cu) Layer by Electrodeposition Method with Theobroma cacao Peels as Corrosion Protector of Steel. International Journal on Advanced Science, Engineering and Information Technology. 2018, 8(4):1290–5. https://doi.org/10.18517/ijaseit.8.4.4104
  27. Zeng, T. W.; Yen, S.C. Effect of Gelatin on Electroplated Copper Though the Use of a Modified-Hydrodynamic Electroplating Test Cell. International Journal of Electrochemical Science. 2021, 16(2):1–9. DOI:10.20964/2021.02.48