Main Article Content

Abstract

Elektrodeposisi atau elektroplating merupakan proses elektrokimia yang diterapkan untuk modifikasi struktur permukaan, yang dapat memperbaiki permukaan logam yang rusak dan meningkatkan penampilan dan kinerjanya. Penambahan zat aditif sintetik maupun ekstrak tanaman yang dapat digunakan cukup beragam, keduanya memiliki efektivitas masing-masing dalam menghasilkan morfologi permukaan yang lebih halus, meningkatkan kilap, dan struktur kristal yang merata. Banyak faktor yang dapat mempengaruhi kualitas lapisan, mulai dari zat aditif yang digunakan, konsentrasi larutan, kerapatan arus, dan suhu larutan.

Article Details

How to Cite
Askhan, J., Alvin Reagen, M., Avidlyandi, & Yudha, S. (2024). Studi Pustaka - Penggunaan Zat Aditif Sintetik dan Ekstrak Tumbuhan dalam Elektrodeposisi Seng. RAFFLESIA JOURNAL OF NATURAL AND APPLIED SCIENCES, 4(2), 315–324. https://doi.org/10.33369/rjna.v4i2.39407

References

  1. Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyarzadeh, M.H.; Rouhaghdam, A.S. Electrodeposition of Ni-Fe alloys, composites, and nano coatings–A review. Journal of Alloys Compounds, 2017, 691:841–59. http:// dx.doi.org/10.1016/j. jallcom. 2016.08.329.
  2. Haqiqi, M.; Rusiyanto, R.; Fitriyana, D.F.; Kriswanto, K.; Pengaruh Warna Pelapis dan Ketebalan Lapisan Pada Proses Zinc Electroplating Terhadap Laju Korosi Baja AISI 1015. Jurnal Inovasi Mesin, 2021, 3(1):27–34.
  3. Karima, H.; Sameh, B.; Baya, B.; Louiza, B.; Soraya, H.; Hatem, B.; Merzoug, B. Corrosion inhibition impact of Pyracantha coccinea M. Roem extracts and their use as additives in zinc electroplating: Coating morphology, electrochemical and weight loss investigations. Journal of the Taiwan Institute Chemical Engineers, 2021, 121:337–48. https://doi .org/10.1016/j.jtice.2021.04.007.
  4. Zaabar, A.; Rocca, E.; Veys-Renaux, D.; Aitout, R.; Hammache, H.; Makhloufi, L.; Belhamel, K. Influence of nettle extract on zinc electrodeposition in an acidic bath: Electrochemical effect and coating morphology. Hydrometallurgy, 2020, 191:1-6. https://doi.org/10.1016/j.hydromet.2019.105186.
  5. Loto, C.A; Olofinjana, A.; Popoola, A.P.I. Effect of Saccharum officinarum juice extract additive on the electrodeposition of Zinc on mild steel in acid chloride solution. International Journal Electrochemical Science, 2012, 7(10):9795–811. https://doi.org /10.1016/S1452-3981(23)16900-8.
  6. Loto, C.A. Synergistic effect of tobacco and sugarcane extracts on the surface morphology of electrodeposited zinc on mild steel. International Journal Electrochemical Science, 2013, 8(9):11058–71. https://doi.org/10.1016/S1452-3981(23) 13169-5.
  7. Loto, C.A.; Popoola, A.P.I.; Allanah, Y.N. Synergism of saccharum officinarum, nicotiana tobaccum and ananas comusus extract additives on the morphological structure and quality of electroplated zinc on mild steel. International Journal Electrochemical Science, 2013, 8(9):11371–85. https://doi.org/10.1016/S1452-3981(23)13191-9.
  8. Rajendran, S.; Devi, K.; Regis, P.P.; Amalraj, J.; Jeyasundari, J.; Manivannan, M. Electroplating using environmental friendly garlic extract: A case study. Zaštita Materijala, 2009, 50(3):131–40. UDC:620.197.5:621.357.7.
  9. Loto, R.T.; Loto, C.; Akinyele, M. Zinc electrodeposition of mild steel in the presence of ginger, pomegranate and celery extracts. IOP Conference Series Materials Science and Engineering, 2020, 965(1): 1-4. doi:10.1088/1757-899X/965/1/012012.
  10. Hanini, K.; Merzoug, B.; Boudiba, S.; Selatnia, I.; Laouer, H.; Akkal, S. Influence of different polyphenol extracts of Taxus baccata on the corrosion process and their effect as additives in electrodeposition. Sustainable Chemistry and Pharmacy, 2019, 14:1-14. https://doi.org/10.1016/j.scp.2019.100189.
  11. Loto, R.T.; Loto, C.A.; Akinyele, M. Effect of ginger, pomegranate and celery extracts on zinc electrodeposition, surface morphology and corrosion inhibition of mild steel. Alexandria Engineering Journal, 2020, 59(2):933–41. https://doi.org /10.1016/j.aej.2020.03.014.
  12. Singh, R.; Iye, S.; Prasad, S.; Deshmukh, N.; Gupta, U.; Zanje, A.; Patil, S.; Joshi, S. Phytochemical Analysis of Muntingia calabura Extracts Possessing Anti-Microbial and Anti-Fouling Activities. International Journal Pharmacognosy Phytochemical Research, 2017, 9(6): 826-832. http://dx.doi.org/10.25258/phyto.v9i6.8186.
  13. Hsieh, J.C.; Hu, C.C.; Lee, T.C. The Synergistic Effects of Additives on Improving the Electroplating of Zinc under High Current Densities. Journal of the Electrochemical Society, 2008, 155(10):D675-D681. DOI: 10.1149/1.2967343.
  14. Liu, Z.; ZeinElAbedin, S.; Borisenko, N.; Endres, F. Influence of an Additive on Zinc Electrodeposition in the Ionic Liquid 1-Ethyl-3- methylimidazolium Trifluoromethylsulfonate. Chem ElectroChem, 2015, 2(8):1159–63. DOI:10.1002/celc.201500108.
  15. Nayana, K.O.; Venkatesha, T.V. Synergistic effects of additives on morphology, texture and discharge mechanism of zinc during electrodeposition. Journal of Electroanalytical Chemistry, 2011, 663(2):98–107. http://dx.doi.org/10.1016/j. jelechem .2011.10.001.
  16. Nayana, K.O.; Venkatesha, T.V.; Praveen, B.M.; Vathsala, K. Synergistic effect of additives on bright nanocrystalline zinc electrodeposition. Journal of Applied Electrochemistry, 2011, 41(1):39–49. http://dx.doi.org/10.1007/s10800-010-0205-8.
  17. Onkarappa, N.K.; Satyanarayana, J.C.A.; Suresh, H.; Malingappa, P. Influence of additives on morphology, orientation and anti-corrosion property of bright zinc electrodeposit. Surface & Coatings Technology, 2020, 397:1-31. https://doi.org/10.1016/j.surfcoat.2020.126062.
  18. Nayana, K.O.; Venkatesha, T.V. Bright zinc electrodeposition and study of influence of synergistic interaction of additives on coating properties. Journal of Industrial Engineering Chemistry, 2015, 26:107–15. http://dx.doi.org/10.1016/j.jiec.2014.11. 021.
  19. Onkarappa, N.K.; Adarakatti, P.S.; Malingappa, P. A Study on the Effect of Additive Combination on Improving Anticorrosion Property of Zinc Electrodeposit from Acid Chloride Bath. Industrial & Engineering Chemical Research, 2017, 56(18):5284–95. DOI:10.1021/acs.iecr.7b00154
  20. Schlesinger, M.; Paunovic, M. Modern Electroplating, 5th Ed.; A John Wiley & Sons Inc Puclication : University of Windsor, Canada, 2010; 1-729.
  21. Mohammed, A.J.; Moats, M. Effects of Carrier, Leveller, and Booster Concentrations on Zinc Plating from Alkaline Zincate Baths. Metals, 2022, 12(4): 1-11. https://doi.org/10.3390/met12040621.
  22. Lorza, R.L.; Calvo, M.Á.M.; Labari, C.B.; Fuente. P.J.R. Using the multi-response method with desirability functions to optimize the Zinc electroplating of steel screws. Metals. 2018, 8(9):1–20. doi:10.3390/met8090711.
  23. Sciscenko, I.; Pedre, I.; Hunt, A.; Bogo, H.; González, G.A. Determination of a typical additive in zinc electroplating baths. Microchemical Journal, 2016, 127:226–30. http://dx.doi.org/10.1016/j.microc.2016.03.015.
  24. Loto, C.A.; Loto, R.T. Effect of dextrin and thiourea additives on the zinc electroplated mild steel in acid chloride solution. International Journal of Electrochemical Science, 2013, 8(12):12434–50. https://doi.org/10.1016/S1452-3981(23) 13278-0.
  25. Shivakumara, S.; Sachin, H.P.; Achary, G.; Arthoba, Naik, Y.; Venkatesha, T.V. Electrodeposition of zinc from sulphate solution. Turkish Journal of Chemistry, 2006, 22(8–9):371–7. https://journals.tubitak.gov.tr/chem/vol26/iss5/11.
  26. Mouanga, M.; Ricq, L.; Douglade, J.; Berçot, P. Corrosion behaviour of zinc deposits obtained under pulse current electrodeposition: Effects of coumarin as additive. Corrosion Science, 2009, 51(3):690–8. http://dx.doi.org/ 10.1016/j.corsci.2008.12. 020
  27. Mouanga, M.; Ricq, L.; Douglade, G.; Douglade, J.; Berçot, P. Influence of coumarin on zinc electrodeposition. Surface & Coatings Technology, 2006, 201(3–4):762–7. https://doi.org/10.1016/j.surfcoat.2005.12.036.
  28. Hashemi, A.B.; Kasiri, G.; Mantia F.L. The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries. Electrochimica Acta, 2017, 258:703–8. https://doi.org/10.1016/j.electacta.2017.11. 116
  29. Hsieh, J.C.; Hu, C.C.; Lee, T.C. Effects of polyamines on the deposition behavior and morphology of zinc electroplated at high-current densities in alkaline cyanide-free baths. Surface & Coatings Technology, 2009, 203(20–21):3111–5. http://dx.doi.org/ 10.1016/j.surfcoat.2009.03.035
  30. Zhan, Z.; Zhang, Q.; Wang, S.; Liu, X.; Sun, Z.; Zhang, K.; Dhu, N.; Shu, W. Effect of Additives on Electrodeposition of Zinc from Alkaline Zincate Solution and Their Synergy Mechanism. International of Journal Electrochemical Science, 2021,16(3):1–16. DOI:10.20964/2021.03.24
  31. Alesary, H.F.; Cihangir, S.; Ballantyne, A.D.; Harris, R.C.; Weston, D.P.; Abbott, A.P.; Ryder, K.S. Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochimica Acta, 2019, 304:118–30. 10.1016/j.electacta.2019.02.090.
  32. Abbott, A.P.; Barron, J.C.; Frisch, G.; Ryder, K.S.; Silva, A.F. The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 2011, 56(14):5272–9. http://dx.doi.org/10.1016/j.electacta.2011.02. 095
  33. Kanyane, L.R.; Fayomi, O.S.I.; Popoola, A.P.I.; Sibisi, P.N. Effect of MgO/MnO2 additives on the structural properties of zinc electroplated mild steel. Procedia Manufacturing, 2019, 35:265–71. https://doi.org/10.1016/j.promfg.2019.05.038
  34. Loto, C.A.; Loto, R.T. Effects of Nicotiana tobaccum extract additive on the quality of electroplating of zinc on mild steel. Polish of Journal Chemical Technology, 2013, 15(1):38–45. 10.2478/pjct-2013-0008.
  35. Loto, C.A. Synergism of Saccharum officinarum and Ananas comosus extract additives on the quality of electroplated zinc on mild steel. Research on Chemical Intermediates, 2014, 40(5):1799–813. DOI 10.1007/s11164-013-1083-6.