Main Article Content
Abstract
PLN Indonesia Power ULPL TA Musi utilizes the potential energy of
water which is then used to drive a turbine connected to a generator rotor.
Excitation system plays an important role in controlling the stabil of a
generator as a controller and functions to control generator output such as
voltage, current and power factor. The excitaton system for all units in the
Musi hydroelectric power house uses a brush excitation system. Brush
excitation is an excitation with a brush by utilizing the output of the generator
itself as the excitation. There are 3 types of generator power, namely active
power (MW), reactive power (MVAR), and apparent power (MVA). This data
is taken from the daily operaing data of the Musi turbine hydropower unit 1.
The highest power factor value is obtained in the early morning of 0,999 Cos
with a reactive power value of 0,5 MVAR to 1,8 MVAR. While the lowest
power factor value is 0,975 Cos with a reactive power value is 6,2 MVAR.
The smaller the reactive power value, the greater the power factor.
Keywords
Article Details
Copyright (c) 2023 Aziz Zulhakim, Yanolanda Suzantry Handayani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree with the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Alam, A. (2015). Pemodelan dan Simulasi Automatic Voltage Regulator Untuk Generator Sinkron 3 KVA Berbasis Proportional Integral. Jurnal Reka Elkomika, 3(2), 97-110.
- Andri, S. (2013). Analisa Pengaruh Perubahan Beban Terhadap Karakteristik Generator Sinkron. Institut Teknologi Padang.
- Bandri, Sepanur. (2013). Analisa Pengaruh Perubahan Beban Terhadap Karakteristik Generator Sinkron (Aplikasi PLTG Pauh Limo Padang). Jurnal Teknik Elektro, 2(1), 42-48.
- Harahap, Mucshin., dkk. (2021). Pengaruh Perubahan Variasi Eksitasi Tegangan Terhadap Daya Reaktif Pada Generator. RELE (Rekayasa Elektrikal dan Energi) : Jurnal Teknik Elektro, 3(2), ISSN 2662-7002.
- Irawan, H. (2010). Sistem Penguatan Dengan Eksitasi (Brush Excitation System) Pada Generator Unit 1 PLTU Cilacap. Universitas Diponegoro.
- Pane, E. (2009). Studi Sistem Eksitasi Dengan Menggunakan Magnet Permanent Generator. Universitas Sumatera Utara.
- Sarlianti, S. S. (2016). Analisis Karakteristik Sedimentasi di Waduk Plta Tes Sebagai Usaha Awal Dalam Perencanaan Penanggulangan Diss. Fakultas Matematika Dan Ilmu Pengetahuan Alam UNIB.
- Sindang, Kevin Chrisdanial., dkk. (2022). Pengaruh Pembebanan Terhadap Sistem Eksitasi Generator Sinkron Sf 33.065 Pada Pembangkit Listrik Tenaga Air (PLTA) Posos 1 Energy. Prosiding Seminar Nasional Teknik Elektro dan Informatika (SNTEI). Universitas Tadulako.
- Syukur, D. (2013). Generator Sinkron Tiga Fasa. Semarang: Politeknik Negeri Semarang.
- Wikipedia. (11 Desember 2022). Pembangkit Listrik Tenaga Air Musi. [Internet]. Tersedia:https//id.wikipe dia.org/wiki/Pembangkit_Listrik_Tenaga_Air_Musi/ (Diakses 13 Maret 2023).
References
Alam, A. (2015). Pemodelan dan Simulasi Automatic Voltage Regulator Untuk Generator Sinkron 3 KVA Berbasis Proportional Integral. Jurnal Reka Elkomika, 3(2), 97-110.
Andri, S. (2013). Analisa Pengaruh Perubahan Beban Terhadap Karakteristik Generator Sinkron. Institut Teknologi Padang.
Bandri, Sepanur. (2013). Analisa Pengaruh Perubahan Beban Terhadap Karakteristik Generator Sinkron (Aplikasi PLTG Pauh Limo Padang). Jurnal Teknik Elektro, 2(1), 42-48.
Harahap, Mucshin., dkk. (2021). Pengaruh Perubahan Variasi Eksitasi Tegangan Terhadap Daya Reaktif Pada Generator. RELE (Rekayasa Elektrikal dan Energi) : Jurnal Teknik Elektro, 3(2), ISSN 2662-7002.
Irawan, H. (2010). Sistem Penguatan Dengan Eksitasi (Brush Excitation System) Pada Generator Unit 1 PLTU Cilacap. Universitas Diponegoro.
Pane, E. (2009). Studi Sistem Eksitasi Dengan Menggunakan Magnet Permanent Generator. Universitas Sumatera Utara.
Sarlianti, S. S. (2016). Analisis Karakteristik Sedimentasi di Waduk Plta Tes Sebagai Usaha Awal Dalam Perencanaan Penanggulangan Diss. Fakultas Matematika Dan Ilmu Pengetahuan Alam UNIB.
Sindang, Kevin Chrisdanial., dkk. (2022). Pengaruh Pembebanan Terhadap Sistem Eksitasi Generator Sinkron Sf 33.065 Pada Pembangkit Listrik Tenaga Air (PLTA) Posos 1 Energy. Prosiding Seminar Nasional Teknik Elektro dan Informatika (SNTEI). Universitas Tadulako.
Syukur, D. (2013). Generator Sinkron Tiga Fasa. Semarang: Politeknik Negeri Semarang.
Wikipedia. (11 Desember 2022). Pembangkit Listrik Tenaga Air Musi. [Internet]. Tersedia:https//id.wikipe dia.org/wiki/Pembangkit_Listrik_Tenaga_Air_Musi/ (Diakses 13 Maret 2023).