Main Article Content
Abstract
This research aims to optimize the design of a 6-axis robotic Arm for spray painting processes in the automotive industry. The main problem identified is the complexity of the structure and the presence of non-functional components, which complicate the manufacturing process. Through benchmarking methods, analysis of the Bill of Materials (BoM), creation of an Operation Process Chart (OPC), and Assembly Chart (AC), the design was simplified without reducing its core functionality. Design development was carried out using Autodesk Inventor software to create a more efficient 3D model. An evaluation was conducted on the new design, including a Cost of Goods Manufactured (HPP) analysis to ensure cost efficiency. The research results show that eliminating non-functional parts improves production speed, reduces costs, and maintains the robotic Arm's balance and safety. Thus, the developed robotic Arm is simpler, more effective, and more economical to support increased industrial productivity.
Article Details
Copyright (c) 2025 Alfred Ozzie Finerkwook, Gabriel Gabriel, Alvin D. P. Lie, Handi Wilujeng Nugroho, Kurniawan Hamidi, Rama Dani Eka Putra, Tessa Zulenia Fitri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree with the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
-
Adekola Adebayo, R., Constance Obiuto, N., Clinton Festus-Ikhuoria, I., & Kayode Olajiga, O. (2024). Robotics in Manufacturing: A Review of Advances in Automation and Workforce Implications. International Journal of Advanced Multidisciplinary Research and Studies, 4(2), 632–638. https://doi.org/10.62225/2583049x.2024.4.2.2549
Anaam, I. K., Hidayat, T., Pranata, R. Y., Abdillah, H., Yhuto, A., & Putra, W. (2022). Pengaruh trend otomasi dalam dunia manufaktur dan industri. Vocational Education National Seminar ( VENS ), 46–50.
Borra, S. P. R., & et al, . (2023). Towards Human-Like Robotic Grasping for Industrial Applications Using Computer Vision. Springer.
Budiman, S., Desvabrahma, R. L., Ayega, I. H., & Tamba, T. A. (2022). Sistem Penentuan Lokasi Objek Target Untuk Manipulator Lengan Robot Berbasis Sensor Penglihatan Biaya Rendah. Jurnal Otomasi, Kontrol & Instrumentasi, 14(1), 21–30.
Cinelli, M., Ferraro, G., Iovanella, A., Lucci, G., & Schiraldi, M. M. (2020). A network perspective for the analysis of Bill of Material. Procedia CIRP, 88(July 2019), 19–24. https://doi.org/10.1016/j.procir.2020.05.004
Dzedzickis, A., Zemaitiene, J. S., Sutinys, E., Bubniene, U. S., & Bucinskas, V. (2021). Application of the Clustering Challenge to New Railway Lines. Transport Means - Proceedings of the International Conference, 2021-Octob, 911–917. https://doi.org/10.3390/app12010135
Ekarinda, H. H., Purwanto, D., & Mardiyanto, R. (2021). Purwarupa Lengan Robot Penyuap Makanan Berbasis Estimasi Posisi Mulut. Jurnal Teknik ITS, 10(1). https://doi.org/10.12962/j23373539.v10i1.59565
Igbokwe, K. K., & Ikwunze, O. S. (2022). Design of robotic manipulator for painting purposes in automotive industry. Global Journal of Engineering and Technology Advances, 13(2), 54–59. https://doi.org/https://doi.org/10.30574/gjeta.2022.13.2.0181
Jing, G. (2023). Analysis of Grasping Target by Simulated Six-Axis Robot. Highlights in Science, Engineering and Technology, 63, 259–266. https://doi.org/10.54097/hset.v63i.10884
Karthik, S., Rajan, M. N., N, M., & Vimrehswaran, K. (2023). Creating a 6-Axis Robot for Enhanced Assembly Line Safety in Automotive Manufacturing. 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN). https://doi.org/10.1109/ICPCSN58827.2023.00290
Kounev, S. (2021). A new course on systems benchmarking - For scientists and engineers. In ICPE 2021 - Companion of the ACM/SPEC International Conference on Performance Engineering. https://doi.org/10.1145/3447545.3451198
Lu, W., Zhang, C., Liu, F., Zhao, S., Luan, X., & Wu, J. (2024). Paint Surface Estimation and Trajectory Planning for Automated Painting Systems. Mathematical Foundations of Computing, 7(2), 195–208. https://doi.org/10.3934/mfc.2023034
Nugroho, T. A., Amarco, A. K., & Yasin, M. (2023). Perkembangan Industri 5.0 Terhadap Perekonomian Indonesia. Manajemen Kreatif Jurnal (MAKREJU), 1(3), 95–106. https://doi.org/https://doi.org/10.55606/makreju.v1i3.1645
Poerwandito, R., Haryanto, I., Jurusan, M., Mesin, T., Teknik, F., Diponegoro, U., Jurusan, D., Mesin, T., Teknik, F., & Diponegoro, U. (2024). Pengujian Jarak Optimal Robot Manipulator Berbasis Image-Based Visual Servoing. 12(1), 59–64.
Prasetyo, E. A. (2024). Mengenal Robot Lengan dalam Industri: Fungsi dan Aplikasi Utama. Edukasi Elektonika. https://www.edukasielektronika.com/2024/03/mengenal-robot-lengan-dalam-industri-fungsi-dan-aplikasi-utama.html
Priyanka, D. T., Swamy, G. N., Raj, V. N. P., Lakshimi, E. N., Tej, M. M., & Jayanthi, M. P. (2023). Design and Development of Six-Axis Robotic Arm for Industrial Applications. In Proceedings of Congress on Control, Robotics, and Mechatronics: CRM 2023 (pp. 273–281). Springer.
Rendyansyah, Hikmarika, H., Iramawan, Pratama, I., & Alrizki, M. F. (2023). ROBOT MANIPULATOR 4-DOF DALAM MEMINDAHKAN OBJEK MENGGUNAKAN REMOTE CONTROL BERBASIS SIMULASI KOMPUTER. Seminar Na.
Setiyadi, A. D., Setiawan, I., & Afrisal, H. (2021). Perancangan Dan Pengendalian Manipulator Robot 4-Dof Dengan Gripper Berbasis Inverse Kinematics Dan Trajectory Planning Dengan Ros. Transient: Jurnal Ilmiah Teknik Elektro, 10(4), 552–558. https://doi.org/10.14710/transient.v10i4.552-558
Shastri, A., Nargundkar, A., & Kulkarni, A. J. (2021). Introduction to Advanced Manufacturing Processes and Optimization Methodologies. In Socio-Inspired Optimization Methods for Advanced Manufacturing Processes (pp. 1–17). Springer. https://doi.org/https://doi.org/10.1007/978-981-15-7797-0_1
Sirojuddin, Adigutama, Y., Syaefudin, E. A., & Fatah, M. I. Al. (2022). DESAIN KONTROL ROBOT MANIPULATOR KAPASITAS 1.25 kgf. Rekayasa Mesin, 13(3), 675–688. https://doi.org/https://doi.org/10.21776/jrm.v13i3.997
Song, Q., & Zhao, Q. (2024). Recent Advances in Robotics and Intelligent Robots Applications. Applied Sciences (Switzerland), 14(10). https://doi.org/10.3390/app14104279
Sufyan, M. (2024). What is a Six Axis Robot: Exploring the Versatile Powerhouse of Industrial Automation. Wevolver. https://www.wevolver.com/article/what-is-a-six-axis-robot-exploring-the-versatile-powerhouse-of-industrial-automation
Widodo, I. G., Hartono, H., Tjahjono, B., Safriana, E., & Amrullah, T. Z. (2023). Desain dan Analisis Model Lengan Robot untuk Memindahkan Material. Jurnal Rekayasa Mesin, 18(2), 313. https://doi.org/10.32497/jrm.v18i2.4707
Yunze, L. (2022). Analysis of the application of industrial robots in intelligent manufacturing. International Journal of Frontiers in Engineering Technology, 4(7), 64–67. https://doi.org/10.25236/ijfet.2022.040713
Yusufadz, A. C., & Rosyidin, A. (2022). ANALISIS PENERAPAN ARTIFICIAL INTELLIGENCE DAN ROBOTIK PADA INDUSTRI MANUFAKTUR INDONESIA DALAM MENGHADAPI ERA. Prosiding Seminar Nasional Teknologi Industri (SNTI), 9 (1), 227–232.
References
Anaam, I. K., Hidayat, T., Pranata, R. Y., Abdillah, H., Yhuto, A., & Putra, W. (2022). Pengaruh trend otomasi dalam dunia manufaktur dan industri. Vocational Education National Seminar ( VENS ), 46–50.
Borra, S. P. R., & et al, . (2023). Towards Human-Like Robotic Grasping for Industrial Applications Using Computer Vision. Springer.
Budiman, S., Desvabrahma, R. L., Ayega, I. H., & Tamba, T. A. (2022). Sistem Penentuan Lokasi Objek Target Untuk Manipulator Lengan Robot Berbasis Sensor Penglihatan Biaya Rendah. Jurnal Otomasi, Kontrol & Instrumentasi, 14(1), 21–30.
Cinelli, M., Ferraro, G., Iovanella, A., Lucci, G., & Schiraldi, M. M. (2020). A network perspective for the analysis of Bill of Material. Procedia CIRP, 88(July 2019), 19–24. https://doi.org/10.1016/j.procir.2020.05.004
Dzedzickis, A., Zemaitiene, J. S., Sutinys, E., Bubniene, U. S., & Bucinskas, V. (2021). Application of the Clustering Challenge to New Railway Lines. Transport Means - Proceedings of the International Conference, 2021-Octob, 911–917. https://doi.org/10.3390/app12010135
Ekarinda, H. H., Purwanto, D., & Mardiyanto, R. (2021). Purwarupa Lengan Robot Penyuap Makanan Berbasis Estimasi Posisi Mulut. Jurnal Teknik ITS, 10(1). https://doi.org/10.12962/j23373539.v10i1.59565
Igbokwe, K. K., & Ikwunze, O. S. (2022). Design of robotic manipulator for painting purposes in automotive industry. Global Journal of Engineering and Technology Advances, 13(2), 54–59. https://doi.org/https://doi.org/10.30574/gjeta.2022.13.2.0181
Jing, G. (2023). Analysis of Grasping Target by Simulated Six-Axis Robot. Highlights in Science, Engineering and Technology, 63, 259–266. https://doi.org/10.54097/hset.v63i.10884
Karthik, S., Rajan, M. N., N, M., & Vimrehswaran, K. (2023). Creating a 6-Axis Robot for Enhanced Assembly Line Safety in Automotive Manufacturing. 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN). https://doi.org/10.1109/ICPCSN58827.2023.00290
Kounev, S. (2021). A new course on systems benchmarking - For scientists and engineers. In ICPE 2021 - Companion of the ACM/SPEC International Conference on Performance Engineering. https://doi.org/10.1145/3447545.3451198
Lu, W., Zhang, C., Liu, F., Zhao, S., Luan, X., & Wu, J. (2024). Paint Surface Estimation and Trajectory Planning for Automated Painting Systems. Mathematical Foundations of Computing, 7(2), 195–208. https://doi.org/10.3934/mfc.2023034
Nugroho, T. A., Amarco, A. K., & Yasin, M. (2023). Perkembangan Industri 5.0 Terhadap Perekonomian Indonesia. Manajemen Kreatif Jurnal (MAKREJU), 1(3), 95–106. https://doi.org/https://doi.org/10.55606/makreju.v1i3.1645
Poerwandito, R., Haryanto, I., Jurusan, M., Mesin, T., Teknik, F., Diponegoro, U., Jurusan, D., Mesin, T., Teknik, F., & Diponegoro, U. (2024). Pengujian Jarak Optimal Robot Manipulator Berbasis Image-Based Visual Servoing. 12(1), 59–64.
Prasetyo, E. A. (2024). Mengenal Robot Lengan dalam Industri: Fungsi dan Aplikasi Utama. Edukasi Elektonika. https://www.edukasielektronika.com/2024/03/mengenal-robot-lengan-dalam-industri-fungsi-dan-aplikasi-utama.html
Priyanka, D. T., Swamy, G. N., Raj, V. N. P., Lakshimi, E. N., Tej, M. M., & Jayanthi, M. P. (2023). Design and Development of Six-Axis Robotic Arm for Industrial Applications. In Proceedings of Congress on Control, Robotics, and Mechatronics: CRM 2023 (pp. 273–281). Springer.
Rendyansyah, Hikmarika, H., Iramawan, Pratama, I., & Alrizki, M. F. (2023). ROBOT MANIPULATOR 4-DOF DALAM MEMINDAHKAN OBJEK MENGGUNAKAN REMOTE CONTROL BERBASIS SIMULASI KOMPUTER. Seminar Na.
Setiyadi, A. D., Setiawan, I., & Afrisal, H. (2021). Perancangan Dan Pengendalian Manipulator Robot 4-Dof Dengan Gripper Berbasis Inverse Kinematics Dan Trajectory Planning Dengan Ros. Transient: Jurnal Ilmiah Teknik Elektro, 10(4), 552–558. https://doi.org/10.14710/transient.v10i4.552-558
Shastri, A., Nargundkar, A., & Kulkarni, A. J. (2021). Introduction to Advanced Manufacturing Processes and Optimization Methodologies. In Socio-Inspired Optimization Methods for Advanced Manufacturing Processes (pp. 1–17). Springer. https://doi.org/https://doi.org/10.1007/978-981-15-7797-0_1
Sirojuddin, Adigutama, Y., Syaefudin, E. A., & Fatah, M. I. Al. (2022). DESAIN KONTROL ROBOT MANIPULATOR KAPASITAS 1.25 kgf. Rekayasa Mesin, 13(3), 675–688. https://doi.org/https://doi.org/10.21776/jrm.v13i3.997
Song, Q., & Zhao, Q. (2024). Recent Advances in Robotics and Intelligent Robots Applications. Applied Sciences (Switzerland), 14(10). https://doi.org/10.3390/app14104279
Sufyan, M. (2024). What is a Six Axis Robot: Exploring the Versatile Powerhouse of Industrial Automation. Wevolver. https://www.wevolver.com/article/what-is-a-six-axis-robot-exploring-the-versatile-powerhouse-of-industrial-automation
Widodo, I. G., Hartono, H., Tjahjono, B., Safriana, E., & Amrullah, T. Z. (2023). Desain dan Analisis Model Lengan Robot untuk Memindahkan Material. Jurnal Rekayasa Mesin, 18(2), 313. https://doi.org/10.32497/jrm.v18i2.4707
Yunze, L. (2022). Analysis of the application of industrial robots in intelligent manufacturing. International Journal of Frontiers in Engineering Technology, 4(7), 64–67. https://doi.org/10.25236/ijfet.2022.040713
Yusufadz, A. C., & Rosyidin, A. (2022). ANALISIS PENERAPAN ARTIFICIAL INTELLIGENCE DAN ROBOTIK PADA INDUSTRI MANUFAKTUR INDONESIA DALAM MENGHADAPI ERA. Prosiding Seminar Nasional Teknologi Industri (SNTI), 9 (1), 227–232.