Main Article Content
Abstract
The selection of a suitable classification model is important in text-based sentiment analysis, especially in conditions of unbalanced data distribution. Naive Bayes and Support Vector Machine (SVM) are two algorithms that are often used in classification, but the comparison of their performance on unbalanced data still needs to be further reviewed. This study aims to compare the performance of the two algorithms in classifying public sentiment towards the Indonesia Smart Card (KIP) Lecture Program. The implementation of the KIP Lecture Program still faces challenges in the accuracy of aid distribution. This situation raises discussions and various controversies among the public, especially on the X platform. The data used were 1,644 tweets, with a distribution of negative sentiment of 1,392 tweets and positive tweets of 252. To overcome the imbalance of data class distribution, the Synthetic Minority Oversampling Technique (SMOTE) method is used. Based on the evaluation results, before SMOTE was applied, SVM obtained 92% accuracy and 91% precision, 77% recall, while Naive Bayes obtained 79% accuracy, 68% precision, and 78% recall. After the application of SMOTE, SVM performance significantly improved with accuracy, precision, and recall reaching 99%, while Naive Bayes improved to 95% on all metrics. These results show that although SVM excels in higher accuracy, Naive Bayes shows a more stable performance on the data neither after nor after the balancing process is performed.
Keywords
Article Details
Copyright (c) 2025 Ana Rainita Ni Putu, I Made Dendi Maysanjaya, Gede Surya Mahendra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree with the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Adi Negara, R. (2024, Mei 4). Sudah Viral, Mahasiswa Penerima Bantuan Keluarga Miskin KIP Kuliah Sewa Pengacara Ancam Penjarakan yang Bongkar Identitas - Kilat. https://www.kilat.com/nasional/84412585023/sudah-viral-mahasiswa-penerima-bantuan-keluarga-miskin-kip-kuliah-sewa-pengacara-ancam-penjarakan-yang-bongkar-identitas
- Amelia, I., & Sarimole, F. M. (2024). Analisis Sentimen Tanggapan Pengguna Media Sosial X Terhadap Program Beasiswa KIP-Kuliah dengan Menggunakan Algoritma Support Vector Machine (SVM). Dalam Jurnal Indonesia : Manajemen Informatika dan Komunikasi (JIMIK) (Vol. 5, Nomor 3). https://journal.stmiki.ac.id
- Ekaptiningrum, K. (2024, Agustus). Kisah Johar Penerima Beasiswa KIP-K Lulus Cumlaude di FEB UGM, Jadi Sarjana Pertama di Keluarga - FEB UGM. https://feb.ugm.ac.id/id/berita/4765-kisah-johar-penerima-beasiswa-kip-k-lulus-cumlaude-di-feb-ugm-jadi-sarjana-pertama-di-keluarga
- Hakim, S. N., Putra, A. J., & Khasanah, A. U. (2021). Sentiment Analysis on Myindihome User Reviews Using Support Vector Machine and Naïve Bayes Classifier Method. International Journal of Industrial Optimization, 2(2), 141. https://doi.org/10.12928/ijio.v2i2.4449
- Handoko, C. B., & Aditya, C. S. K. (2025). Penerapan Teknik SMOTE Dalam Mengatasi Imbalance Data Penyakit Diabetes Menggunakan Algoritma ANN. Smart Comp: Jurnalnya Orang Pintar Komputer, 14(1). https://doi.org/10.30591/smartcomp.v14i1.7045
- Hashfi, F., Sugiarto, D., & Mardianto, I. (2022). Sentiment Analysis of An Internet Provider Company Based on Twitter Using Support Vector Machine and Naïve Bayes Method. Ultimatics : Jurnal Teknik Informatika, 14(1), 1–6. https://doi.org/10.31937/ti.v14i1.2384
- Ilmawan, L. B., & Mude, M. A. (2020). Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store. ILKOM Jurnal Ilmiah, 12(2), 154–161. https://doi.org/10.33096/ilkom.v12i2.597.154-161
- Iskandar, J. W., & Nataliani, Y. (2021). Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(6), 1120–1126. https://doi.org/10.29207/resti.v5i6.3588
- Khaira, U., Aryani, R., & Hardian, R. W. (2023). Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Kebijakan Kemdikbudristek Mengenai Kuota Internet Selama Covid-19. Jurnal PROCESSOR, 18(2). https://doi.org/10.33998/processor.2023.18.2.897
- Pramudita, D., Akbar, Y., & Wahyudi, T. (2024). Analisis Sentimen Terhadap Program Kartu Indonesia Pintar Kuliah Pada Media Sosial X Menggunakan Algoritma Naive Bayes. 4, 1420–1430. https://doi.org/10.57152/malcom.v4i4.1565
- Puspapertiwi, E. R., & Nugroho, R. S. (2024, Mei 1). Ramai soal Mahasiswi Undip Penerima KIP Kuliah Bergaya Hidup Mewah, Mundur Usai Diungkap Warganet Halaman all - Kompas.com. https://www.kompas.com/tren/read/2024/05/01/204500465/ramai-soal-mahasiswi-undip-penerima-kip-kuliah-bergaya-hidup-mewah-mundur?page=all
- Yuliantri P, F. (2021, Juli 19). Hilangnya Hak Anak dalam Sengkarut Program Indonesia Pintar. https://wartapemeriksa.bpk.go.id/?p=26572
References
Adi Negara, R. (2024, Mei 4). Sudah Viral, Mahasiswa Penerima Bantuan Keluarga Miskin KIP Kuliah Sewa Pengacara Ancam Penjarakan yang Bongkar Identitas - Kilat. https://www.kilat.com/nasional/84412585023/sudah-viral-mahasiswa-penerima-bantuan-keluarga-miskin-kip-kuliah-sewa-pengacara-ancam-penjarakan-yang-bongkar-identitas
Amelia, I., & Sarimole, F. M. (2024). Analisis Sentimen Tanggapan Pengguna Media Sosial X Terhadap Program Beasiswa KIP-Kuliah dengan Menggunakan Algoritma Support Vector Machine (SVM). Dalam Jurnal Indonesia : Manajemen Informatika dan Komunikasi (JIMIK) (Vol. 5, Nomor 3). https://journal.stmiki.ac.id
Ekaptiningrum, K. (2024, Agustus). Kisah Johar Penerima Beasiswa KIP-K Lulus Cumlaude di FEB UGM, Jadi Sarjana Pertama di Keluarga - FEB UGM. https://feb.ugm.ac.id/id/berita/4765-kisah-johar-penerima-beasiswa-kip-k-lulus-cumlaude-di-feb-ugm-jadi-sarjana-pertama-di-keluarga
Hakim, S. N., Putra, A. J., & Khasanah, A. U. (2021). Sentiment Analysis on Myindihome User Reviews Using Support Vector Machine and Naïve Bayes Classifier Method. International Journal of Industrial Optimization, 2(2), 141. https://doi.org/10.12928/ijio.v2i2.4449
Handoko, C. B., & Aditya, C. S. K. (2025). Penerapan Teknik SMOTE Dalam Mengatasi Imbalance Data Penyakit Diabetes Menggunakan Algoritma ANN. Smart Comp: Jurnalnya Orang Pintar Komputer, 14(1). https://doi.org/10.30591/smartcomp.v14i1.7045
Hashfi, F., Sugiarto, D., & Mardianto, I. (2022). Sentiment Analysis of An Internet Provider Company Based on Twitter Using Support Vector Machine and Naïve Bayes Method. Ultimatics : Jurnal Teknik Informatika, 14(1), 1–6. https://doi.org/10.31937/ti.v14i1.2384
Ilmawan, L. B., & Mude, M. A. (2020). Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store. ILKOM Jurnal Ilmiah, 12(2), 154–161. https://doi.org/10.33096/ilkom.v12i2.597.154-161
Iskandar, J. W., & Nataliani, Y. (2021). Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(6), 1120–1126. https://doi.org/10.29207/resti.v5i6.3588
Khaira, U., Aryani, R., & Hardian, R. W. (2023). Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Kebijakan Kemdikbudristek Mengenai Kuota Internet Selama Covid-19. Jurnal PROCESSOR, 18(2). https://doi.org/10.33998/processor.2023.18.2.897
Pramudita, D., Akbar, Y., & Wahyudi, T. (2024). Analisis Sentimen Terhadap Program Kartu Indonesia Pintar Kuliah Pada Media Sosial X Menggunakan Algoritma Naive Bayes. 4, 1420–1430. https://doi.org/10.57152/malcom.v4i4.1565
Puspapertiwi, E. R., & Nugroho, R. S. (2024, Mei 1). Ramai soal Mahasiswi Undip Penerima KIP Kuliah Bergaya Hidup Mewah, Mundur Usai Diungkap Warganet Halaman all - Kompas.com. https://www.kompas.com/tren/read/2024/05/01/204500465/ramai-soal-mahasiswi-undip-penerima-kip-kuliah-bergaya-hidup-mewah-mundur?page=all
Yuliantri P, F. (2021, Juli 19). Hilangnya Hak Anak dalam Sengkarut Program Indonesia Pintar. https://wartapemeriksa.bpk.go.id/?p=26572