Main Article Content

Abstract

The selection of a suitable classification model is important in text-based sentiment analysis, especially in conditions of unbalanced data distribution. Naive Bayes and Support Vector Machine (SVM) are two algorithms that are often used in classification, but the comparison of their performance on unbalanced data still needs to be further reviewed. This study aims to compare the performance of the two algorithms in classifying public sentiment towards the Indonesia Smart Card (KIP) Lecture Program. The implementation of the KIP Lecture Program still faces challenges in the accuracy of aid distribution. This situation raises discussions and various controversies among the public, especially on the X platform. The data used were 1,644 tweets, with a distribution of negative sentiment of 1,392 tweets and positive tweets of 252. To overcome the imbalance of data class distribution, the Synthetic Minority Oversampling Technique (SMOTE) method is used. Based on the evaluation results, before SMOTE was applied, SVM obtained 92% accuracy and 91% precision, 77% recall, while Naive Bayes obtained 79% accuracy, 68% precision, and 78% recall. After the application of SMOTE, SVM performance significantly improved with accuracy, precision, and recall reaching 99%, while Naive Bayes improved to 95% on all metrics. These results show that although SVM excels in higher accuracy, Naive Bayes shows a more stable performance on the data neither after nor after the balancing process is performed.

Keywords

KIP Kuliah Analisis Sentimen Naive Bayes Support Vector Machine SMOTE KIP Kuliah Sentiment Analysis Naive Bayes Support Vector Machine SMOTE

Article Details

How to Cite
Ni Putu, A. R., Maysanjaya, I. M. D., & Mahendra, G. S. (2025). Performance Comparison of Naive Bayes Algorithm and Support Vector Machine On Sentiment Analysis of Kip-College Program Implementation. Teknosia, 19(02). Retrieved from https://ejournal.unib.ac.id/teknosia/article/view/43479

References

  1. Adi Negara, R. (2024, Mei 4). Sudah Viral, Mahasiswa Penerima Bantuan Keluarga Miskin KIP Kuliah Sewa Pengacara Ancam Penjarakan yang Bongkar Identitas - Kilat. https://www.kilat.com/nasional/84412585023/sudah-viral-mahasiswa-penerima-bantuan-keluarga-miskin-kip-kuliah-sewa-pengacara-ancam-penjarakan-yang-bongkar-identitas
  2. Amelia, I., & Sarimole, F. M. (2024). Analisis Sentimen Tanggapan Pengguna Media Sosial X Terhadap Program Beasiswa KIP-Kuliah dengan Menggunakan Algoritma Support Vector Machine (SVM). Dalam Jurnal Indonesia : Manajemen Informatika dan Komunikasi (JIMIK) (Vol. 5, Nomor 3). https://journal.stmiki.ac.id
  3. Ekaptiningrum, K. (2024, Agustus). Kisah Johar Penerima Beasiswa KIP-K Lulus Cumlaude di FEB UGM, Jadi Sarjana Pertama di Keluarga - FEB UGM. https://feb.ugm.ac.id/id/berita/4765-kisah-johar-penerima-beasiswa-kip-k-lulus-cumlaude-di-feb-ugm-jadi-sarjana-pertama-di-keluarga
  4. Hakim, S. N., Putra, A. J., & Khasanah, A. U. (2021). Sentiment Analysis on Myindihome User Reviews Using Support Vector Machine and Naïve Bayes Classifier Method. International Journal of Industrial Optimization, 2(2), 141. https://doi.org/10.12928/ijio.v2i2.4449
  5. Handoko, C. B., & Aditya, C. S. K. (2025). Penerapan Teknik SMOTE Dalam Mengatasi Imbalance Data Penyakit Diabetes Menggunakan Algoritma ANN. Smart Comp: Jurnalnya Orang Pintar Komputer, 14(1). https://doi.org/10.30591/smartcomp.v14i1.7045
  6. Hashfi, F., Sugiarto, D., & Mardianto, I. (2022). Sentiment Analysis of An Internet Provider Company Based on Twitter Using Support Vector Machine and Naïve Bayes Method. Ultimatics : Jurnal Teknik Informatika, 14(1), 1–6. https://doi.org/10.31937/ti.v14i1.2384
  7. Ilmawan, L. B., & Mude, M. A. (2020). Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store. ILKOM Jurnal Ilmiah, 12(2), 154–161. https://doi.org/10.33096/ilkom.v12i2.597.154-161
  8. Iskandar, J. W., & Nataliani, Y. (2021). Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(6), 1120–1126. https://doi.org/10.29207/resti.v5i6.3588
  9. Khaira, U., Aryani, R., & Hardian, R. W. (2023). Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Kebijakan Kemdikbudristek Mengenai Kuota Internet Selama Covid-19. Jurnal PROCESSOR, 18(2). https://doi.org/10.33998/processor.2023.18.2.897
  10. Pramudita, D., Akbar, Y., & Wahyudi, T. (2024). Analisis Sentimen Terhadap Program Kartu Indonesia Pintar Kuliah Pada Media Sosial X Menggunakan Algoritma Naive Bayes. 4, 1420–1430. https://doi.org/10.57152/malcom.v4i4.1565
  11. Puspapertiwi, E. R., & Nugroho, R. S. (2024, Mei 1). Ramai soal Mahasiswi Undip Penerima KIP Kuliah Bergaya Hidup Mewah, Mundur Usai Diungkap Warganet Halaman all - Kompas.com. https://www.kompas.com/tren/read/2024/05/01/204500465/ramai-soal-mahasiswi-undip-penerima-kip-kuliah-bergaya-hidup-mewah-mundur?page=all
  12. Yuliantri P, F. (2021, Juli 19). Hilangnya Hak Anak dalam Sengkarut Program Indonesia Pintar. https://wartapemeriksa.bpk.go.id/?p=26572