Main Article Content

Abstract

Micro hydro power plant (PLTMH) is a small-scale power plant that uses water in small discharges as its driving source. Water that can be utilized in PLTMH technology can come from irrigation channels, rivers or natural waterfalls. In general, PLTMH has three main components, namely water, water turbines, and generators. The purpose of this study is to analyze the effect of variations in water discharge on the performance of horizontal francis turbines in the Aek Sigeaon Micro Hydro Power Plant (PLTMH) system. The main focus of this study is to observe changes in input power, output power, and turbine efficiency as a result of variations in water discharge that occur in the field. Data collection was carried out using a SCADA monitoring system to obtain operational parameters in real time such as water discharge, pressure, current, and voltage. The results showed that an increase in water discharge generally caused an increase in input and output power, but was not always directly proportional to turbine efficiency. The highest turbine efficiency of 77.8% was obtained at a water discharge of 3.48 m³/s, while the lowest efficiency of 54.65% occurred at a water discharge of 6.01 m³/s. This shows that the horizontal Francis turbine works more efficiently at low to medium discharge.

Article Details

How to Cite
angky, puspawan, Hutasoit, H. R., Supardi, N. I., & Manalu, J. T. (2025). THE PERFORMANCE ANALYSIS OF HORIZONTAL FRANCIS TURBINE TO DISCHARGE VARIATIONS IN THE AEK SIGEAON MICRO POWER PLANT SYSTEM: Indonesia. Teknosia, 19(02). Retrieved from https://ejournal.unib.ac.id/teknosia/article/view/44667

References

  1. . Siahaan, R., & Manalu, J. (2018). Analisis Sistem PLTMH dengan Turbin Aliran silang. Jurnal Teknik Energi, 3.
  2. . Kusuma, D. (2019). Karakteristik Unjuk Kerja Turbin Francis pada PLTMH. Prosiding Seminar Nasional Teknik Mesin, Universitas Negeri Semarang.
  3. . Zulfian, M. (2020). Uji Kinerja Turbin Francis Skala Laboratorium dengan Variasi Bukaan Katup. Jurnal Mekanikal, 6(1).
  4. . Liu, J., Zhang, X., & Wang, L. (2016). Experimental Flow Performance Investigation of Francis Turbines from Model to Prototype. Renewable Energy, 85, 1012–1023.
  5. . Widyantoro, H. (2020). Analisis Pengaruh Debit Air terhadap Kinerja Turbin pada Pembangkit Listrik Nano Hidro. Jurnal Energi Terbarukan dan Konversi, 4(1).
  6. . PLN UID Sumatera Utara (2024). Laporan Operasional PLTMH Aek Sigeaon. PT. Gading Energiprima.
  7. . PT Gading Energiprima. (2023). Profil Perusahaan dan Proyek PLTMH [Dokumen Internal Proyek Aek Sigeaon].
  8. . Rahmawan, I. (2020). Analisis Mekanisme Turbin Pembangkit Bertenagakan Air. Jurnal Reitims, 6(1).
  9. . Umar, B. M. (2024). Experimental flow performance investigation of Francis turbines from model to prototype. Applied Sciences, MDPI.
  10. . Kale, S. (2022). Desain dan Analisis CFD Turbin Francis. Jurnal Internasional Penelitian Teknik dan Sains, 10.
  11. . Li, S. (2025). Influence of Load Variation on the Flow Field and Stability of the Francis Turbine. Journal of Marine Science and Engineering, 13(Eng).
  12. . Joy, J. (2022). Hydraulic Performance of A Francis Turbine with A Variable Draft Tube Guide Vane System to Mitigate Pressure Pulsation. Energies, 15.
  13. . Amini, A. (2023). Upper Part-load Instability in A Reduced-scale Francis Turbine: An Experimental Study. Experimental Fluids, 64.
  14. . Departemen Energi Sumber Daya Mineral RI (2017), Pedoman Umum Pengembangan PLTMH, Direktorat Jenderal Energi Baru, Terbarukan, dan Konservasi Energi, Jakarta.
  15. . A. Widodo, Turbin Air dan Jenis-jenisnya, Yogyakarta: Graha Ilmu, 2015.