Main Article Content

Abstract

Understanding the relation of agroecosystem types, ages, and soil properties are vital in maintaining good quality soil. This study aims to explore the variation of selected soil properties with agroecosystem types and ages. The research has been conducted in North Bengkulu, Indonesia. Soil properties on agroecosystems of 5-yr, 10-yr, 15-yr oil palm plantation, 5-yr, 10-yr, 15-yr rubber plantation, food cropland, and scrubland were evaluated. The study found that soil in oil palm and rubber plantations of any age have a similar texture, bulk density (BD), and actual soil moisture (ASM). All plantation agroecosystems and scrubland have higher clay and lower silt content than that in food cropland. In addition, the scrubland has the highest ASM content among the agroecosystems. On the other hand, both agroecosystems enhances soil chemical properties than food cropland and scrubland as indicated by the improvement of organic-C, total-N, available P, exchangeable K and CEC of Ultisols. Older plantation also provides higher soil chemical improvement than younger one. This finding is significant for management of sub optimal soil mainly Ultisols for oil palm and rubber plantation.

Keywords

earthworm population oil palm rubber Scrubland understory vegetation

Article Details

How to Cite
Prawito, P., Sitorus, I. H. W., Muktamar, Z., Hermawan, B., & Herman, W. (2021). Soil Properties Variability Under Various Agroecosystems In Ultisols Of Bengkulu. TERRA : Journal of Land Restoration, 4(2), 53–59. https://doi.org/10.31186/terra.4.2.53-59

References

  1. Amoah, A. A., Seuge, M., Miyagawa, S. & Itou, K. (2012). Effects of soil fertility management on growth, yield, and water-use efficiency of
  2. maize (Zea mays L.) and selected soil properties. J. Com. Soil Sci. and Plant Anal., 4(6), 924-935. doi.org/10.1080/ 00103624. 2012.653028.
  3. Bahr, E., Chamba-Zaragocin, D., Fierro-Jaramillo, N., Witt, A. & Makeschin, F. (2015). Modeling of soil nutrient balances. flows and stocks revealed effects of management on soil fertility in south Ecuadorian smallholder farming systems. Nutrient Cycling in Agroecosystems, 101, 55–82.
  4. Bewket, W. & Stroosnijder, L. (2003). Effects of agroecological land use succession on soil properties in Chemoga watershed, Blue Nile
  5. basin, Ethiopia. Geoderma, 111(1), 85 – 98. doi.org/10.1016/S0016-7061(02)00255-0.
  6. Ebabu, K., Tsunekawa, A., Haregeweyn, N., Yibeltal, M. (2003). Effects of agroecological land use succession on soil properties in Chemoga watershed. Blue Nile basin. Ethiopia. Geoderma, 111(1), 85-98. DOI: 10.1016/S0016-7061(02)00255-0.
  7. Emadi, M., Bhagernejad, M. & Memarian, R. (2009). Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Used Polecy, 26(2), 452-457.
  8. doi.org/10.1016/j.landusepol.2008.06.001.
  9. Global Forest Watch (June, 2018). Indonesian Soil Types. retrieve from : http://gfw2-data.s3.amazonaws.com/country/idn/zip/idn_soil_type.tif.zip.
  10. Guo, Z., Wan, S., Hua, K., Yin, Y., Chu, H.Y., Wang, D. & Guo, X. (2020). Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Applied Soil Ecology, 149, 103510. doi.org/10.1016/ j.apsoil.2020.103510.
  11. Huising, E. J., Coe, R., Cares, J. E., Louzada, J. N., Zanetti, R., Moreira, F. M. S., Susilo, F. X., Konate, S., van Noordwijk, M. & Huang, S.P. (2008). Sampling Strategy and Design to Evaluate Below-ground Biodiversity. In
  12. F. M. S. Moreira., E. J. Huising, and D. E. Bignell (eds). A Handbook of Tropical Soil Biology (1st ed.). Routledge. London. Sterling. V.A.:17–41. doi.org/10.4324/ 9781849770286.
  13. Jin, J., Zue, Y., Ye, H., Shen, C. & Huang, Y. (2011). Effect of land use and soil management practices on soil fertility quality in North China cities' urban fringe. Afr. J. Agric. Res., 6(9), 2059–2065. http://doi.org/
  14. 5897/AJAR11.174 .
  15. Katra, I. (2020). Soil Erosion by Wind and Dust Emission in Semi-Arid Soils Due to Agricultural Activities. Agronomy, 10(1), 89; https://doi.org/10.3390/agronomy10010089 .
  16. Klute. A. (1986). Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods 2nd Edition.
  17. Muktamar, Z., Lifia, L., Adiprasetyo, T. (2020). Phosphorus availability as affected by the application of organic amendments in Ultisols. Sains Tanah. Jurnal of Soil Science and Agroclimatology, 17(1), 16-22. DOI:10.20961/stjssa.v17i1.41282.
  18. N’Dri, J.K., Gue’I, A. M. Edoukou, E. F., Ye’o, J.G., N’Guessan, K. K. & Laferlof. J. (2018). Can litter production and litter decomposition improve soil properties in the rubber plantations of different ages in Coˆte d’Ivoire? Nutr Cycl Agroecosyst Springer Science+Business Media B.V., art of Springer Nature 2018. https://doi.org/10.1007/s10705-018-9923-9.
  19. Nurhayati, N., Arisoesilaningsih, E., Suprayogo, D. & Hairiah, K. (2012). Earthworm population density in sugarcane cropping system applied with various quality of organic matter. The Journal of Tropical Life Science, 2(3), 103 – 109.
  20. Page. A. L.. Miller, R.H., Keeney, D.R. (1989). Methods of Soil Analysis. Part 2. Chemical and Biological Properties 2nd Edition. ASA.
  21. SSSA. Madison Wisconsisn. USA.
  22. Paoletti, M.G., Sommagio, D., Fafretto, R.F., Petruzzellibe, G., Pezzarossa, B., Barbafieri, M. (1998). Earthworms as useful bioindicators of agroecosystem sustainability in orchards and vineyards with different inputs. Applied Soil Ecology, 10(1), 137–150. doi.org/10.1016/S0929-1393(98)00036-5