Main Article Content

Abstract

Application of organomineral fertilizer (OMF), which is the product of the inclusion of zeolite and  palm oil compost in urea needs to be studied to determine its appropriate dose for the growth and yield of shallots and N substitution. This pot experiment was conducted from October to December 2020 at the Teaching and Research Field of Agriculture Faculty and consisted of five treatments arranged in a completely randomized design with five replications. The treatments were (1) 1.0 g urea, (2) 0.5 g urea + 1.15 g OMF, (3) 0.5 g urea + 2.30 g OMF, (4) 0.5 g urea + 3.45 g OMF, and (5) 0.5 g urea + 4.60 g OMF. The results showed that combined application of 0.5 g urea + 4.60 g OMF produced the highest values of plant height (30.60 cm), number of leaves (30.90), fresh weight of tubers per clump (30.90 g),  dry tuber weight per clump (24.3 g), and tuber diameter (16.25 mm). The incorporation of zeolite and palm oil compost in urea reduced the application rate of urea up to 50% without reducing the growth and yield of shallot. Thus, N fertilizer use can be enhanced if urea is co-applied with zeolite and palm oil compost.

Keywords

organic fertilizer anorganik fertilizer integrated nutrient management slow release fertilizer

Article Details

How to Cite
Bahari, M. T. P., Marwanto, M., Fahrurrozi, F., & Handajaningsih, M. (2022). Zeolite Oil Palm Compost-Based Organomineral Fertilizer for Shallot Agronomic Performances and N Substitution. TERRA : Journal of Land Restoration, 5(1), 1–7. https://doi.org/10.31186/terra.5.1.1-7

References

  1. Antille D. L, Sakrabani,R. & Godwin, R. (2014). Soil and crop responses following application of biosolids-derived organomineral fertilisers to ryegrass (Lolium perenne L.) grown in pots. In: American Society of Agricultural and Biological Engineers Annual International Meeting 2014, ASABE 2014 (eds).
  2. Beigh, B., Niazi, M. B. K., Jahan, Z., Hussain, A., Zia, M. H. & Mehran, M. T. (2020). Coating materials for slow release of nitrogen from urea fertilizer: a review. Journal of Plant Nutrition, 43(10), 1510-1533. https://doi.org/10.1080/01904167.2020.1744647
  3. Brewster, J.L. (1994). Onions and other vegetable Alliums. Wallingford, UK: CAB International.
  4. Chin, A., Schmidt, S., Buckley, S., Pirie, R., Redding, M., Laycock, B. & Brackin, R. (2018). Sorbents can tailor nitrogen release from organic wastes to match the uptake capacity of crops. Science of the Total Environment, 645, 1474-1483. https://doi.org/10.1016/j.scitotenv.2018.07.135
  5. Dall’Orsoletta, D. J., Rauber, L. P., Schmitt, D. E., Gatiboni, L. C. & Orsolin, J. (2017). Urea coated with poultry litter as an option in the control of nitrogen losses. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(6), 398-403. https://doi.org/10.1590/1807-1929/agriambi.v21n6p398-403
  6. de Paula Pereira, A. S. A., de Siqueira Castro, J., Ribeiro, V. J. & Calijuri, M. L. (2021). Organomineral fertilizers pastilles from microalgae grown in wastewater: Ammonia volatilization and plant growth. Science of the Total Environment, 779, 146205. https://doi.org/10.1016/j.scitotenv.2021.146205
  7. Dubey, A. & Mailapalli, D. R. (2019). Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environmental Technology & Innovation, 16, 100452. https://doi.org/10.1016/j.eti.2019.100452
  8. Gardner, F. P., Pearce, R. B. & Mitchell, R. L. (2017). Physiology of Crop Plants. Scientific publishers, Jodhpur, India.
  9. Gastal, F. & Lemaire, G. (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany, 53(370), 789-799. https://doi.org/10.1093/jexbot/53.370.789
  10. Haq, M.A., Triwiningsih, S. & Suherman. (2012). Production of slow-release urea by coating with starch-acrylic using fluidized bed spray technology. Jurnal Teknologi Kimia dan Industri, 1(1), 229 – 336 (in Indonesia).
  11. Hartatik, W., Mardliyati, E., Wibowo, H., Sukarto, A. & Yusron. (2020). Formulation and solubility pattern of slow release urea-zeolite fertilizer. Jurnal Tanah dan Iklim, 44(1), 61-70. http://dx.doi.org/10.21082/jti.v44n1.2020.61-70
  12. Indonesian Statistic Agency. (2019). Statistical Yearbook of Indonesia 2019. BPS-Statistics Indonesia, Jakarta, Indonesia (in Indonesia).
  13. Latifah, O., Ahmed, O. H. & Majid, N. M. A. (2017). Enhancing nitrogen availability from urea using clinoptilolite zeolite. Geoderma, 306, 152-159. https://doi.org/10.1016/j.geoderma.2017.07.012
  14. Mumbach, G. L., Gatiboni, L. C., De Bona, F. D., Schmitt, D. E., Dall’orsolettade, D. J., Gabriel, C. A. & Bonfada, É. B. (2019). Organic, Mineral And Organomineral Fertilizer In The Growth of Wheat And Chemical Changes Of The Soil. Embrapa Trigo-Artigo Em Periódico Indexado (Alice). https://doi.org/10.5039/agraria.v14i1a5618
  15. Rezaei, E. E & Kafi, M. B. M. (2013) Nitrogen and cultivated bulb weight effects on radiation and nitrogen-use efficiency, carbon partitioning and production of persian shallot (Allium altissimum Regel.). J. Crop Sci. Biotechnol, 16, 237-44. http://dx.doi.org/10.1007/s12892-013-0076-8
  16. Roba, T. (2018) Review on: The effect of mixing organic and inorganic fertilizer on productivity and soil fertility. Open Access Library Journal, 5, 1-11. https://doi.org/ 10.4236/oalib.1104618.
  17. Saha, B. K., Rose, M. T., Van Zwieten, L., Wong, V. N. & Patti, A. F. (2021). Slow release brown coal-urea fertilizer potentially influences greenhouse gas emissions, nitrogen use efficiency, and sweet corn yield in Oxisol. ACS Agricultural Science & Technology, 1(5), 469-478. https://doi.org/10.1021/acsagscitech.1c00082
  18. Silitonga, M.O. (2021). Nitrogen uptake, growth and biomass yield of green onion on the application rate of organomineral fertilizer based-Azolla compost. Undergraduate thesis. Agroecotechnology Study Program, the Faculty of Agriculture, the Bengkulu University. Bengkulu (in Indonesia).
  19. Siregar, K.A. (2020). The growth and yield of green onion on the application of vermicompost enriched with inorganic fertilizer in the form of tablets. Undergraduate thesis. Agroecotechnology Study Program, the Faculty of Agriculture, the Bengkulu University. Bengkulu (in Indonesia).
  20. Smith, W. B., Wilson, M. & Pagliari, P. (2020). Organomineral fertilizers and their application to field crops. In Animal Manure: Production, Characteristics, Environmental Concerns, and Management (pp. 229-244). Wiley.
  21. Soil Research Institute. (2009). Chemical Analysis of Soil, Plants, Water, and Fertilizers. Technical Guide Edition II, Soil Research Institute, Bogor, Indonesia. (in Indonesia).
  22. Souri. M.K., Rahidi. M. & Kianmehr. M.H. (2018). Effects of manure-based urea pellets on growth, yield, and nitrate content in coriander, garden cress, and parsley plants. Journal of Plant Nutrition, 41, 1405-1413. https://doi.org/ 10.1080/01904167.2018.1454471
  23. Souza, E.F.C., Rosen, C.J., Venterea, R.T. (2019). Contrasting effects of inhibitors and biostimulants on agronomic performance and reactive nitrogen losses during irrigated potato production. Field Crop. Res. 240. https://doi.org/10.1016/j.fcr.2019.05.001.
  24. Trenkel, M. E. (2010). Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. 2nd ed. Paris: M.E. Trenkel International Fertilizer Industry Association (IFA).
  25. Warsito, J., Sabang, S.M., & Mustapa, K. (2016). Making organic fertilizer from oil palm empty fruit bunches. Jurnal Akademika Kimia, 5(1), 8-15 (in Indonesia).