Main Article Content

Abstract

Soil, water, and crops are interdependent components of agricultural systems, and understanding their characteristics and interactions is critical for effective agricultural management. This study investigates the relationship between soil water-holding capacity and varying land slope gradients. The research was conducted on a community oil palm plantation in Talang Tengah I Village, Pondok Kubang District, Central Bengkulu Regency. A purposive sampling method was applied at five slope categories: flat (0–8%), sloping (8–15%), moderately steep (15–25%), steep (25–45%), and very steep (45–100%). Data analysis was performed using Partial Least Squares Structural Equation Modeling (PLS-SEM) with WarpPLS 7.0 software. The findings demonstrate a significant influence of slope on soil water-holding capacity. Increasing slope gradients are associated with reduced soil permeability, increased bulk density, decreased total pore space, and lower soil organic carbon content, collectively leading to diminished water-holding capacity. The developed model accurately represents the relationships between variables, indicating that slope directly affects organic matter, sand content, and permeability, while bulk density impacts total pore space and permeability, which in turn influence water-holding capacity. The results emphasize the importance of considering land slope in soil and water management strategies to optimize agricultural productivity. Future applications of this model could guide sustainable land-use planning and inform erosion control measures to maintain soil quality and water availability in sloped agricultural landscapes


 

Article Details

Author Biographies

Wanda Afrilia Utami, Faculty of Agriculture, University of Bengkulu

Soil Science Department

Bandi Hermawan, Faculty of Agriculture, University of Bengkulu

Soil Science Department

 

Priyono Prawito, Faculty of Agriculture, University of Bengkulu

Soil Science Department

Muhammad Faiz Barchia, Faculty of Agriculture, University of Bengkulu

Soil Science Department

Sukisno, Faculty of Agriculture, University of Bengkulu

Soil Science Department

Elsa Lolita Putri, Faculty of Agriculture, University of Bengkulu

Soil Science Department

How to Cite
Utami, W. A., Hermawan, B., Prawito, P., Barchia, M. F., Sukisno, & Putri, E. L. (2024). Groundwater Retention Based on Toposequence in People’s Oil Palm Plantations . TERRA : Journal of Land Restoration, 7(2), 110–115. https://doi.org/10.31186/terra.7.2.110-115

References

  1. Adrinal, Gusmini, Putri, E. L., & Nadifa, G. (2024). Studi fisika tanah pada budi daya tembakau (Nicotiana tabacum L) di berbagai kemiringan lahan . Jurnal Ilmu Pertanian Indonesia (JIPI), 29(4), 597–604. DOI: https://doi.org/10.18343/jipi.29.4.597.
  2. Andrian, Supriadi, & Marpaung, P. (2014). Pengaruh ketinggian tempat dan kemiringan lereng terhadap produksi karet (Hevea brasiliensi Muell. Arg.) di Kebun Hapesong PTPN III Tapanuli Selatan. Jurnal Online Agroteknologi, 2(3), 981–989.
  3. Florinsky, I. (2016). Influence of topography on soil properties. In book: Digital Terrain Analysis in Soil Science and Geology (pp.265-270) 2nd Ed. Chapter: 9 Publisher: Elsevier / Academic Press. DOI: https://doi.org/10.1016/B978-0-12-804632-6.00009-2.
  4. Gavrilescu, M. (2021). Water, Soil, and Plants Interactions in a Threatened Environment. Water. 13. 2746. DOI: https://doi.org/10.3390/w13192746.
  5. Glanville, K, Sheldon, F., Butler, D. & Capon, S. (2023). Effects and significance of groundwater for vegetation: A systematic review. Science of The Total Environment. 875, DOI: https://doi.org/10.1016/j.scitotenv.2023.162577.
  6. Gusmini, Adrinal, Yaherwandi, Putri, E. L. & Romadon, P. (2021). Improvement of nutrient status in ex-gold mining land with the application of rice terra preta biochar technology Improvement of nutrient status in ex-gold mining land with the application of rice terra preta biochar technology. IOP Conference Series: Earth and Environmental Science, 741, 1–6. DOI: https://doi.org/10.1088/1755-1315/741/1/012031.
  7. Harahap, S., Purba, F. & Rauf, A. (2021). Hubungan curah hujan dengan pola ketersediaan air tanah terhadap produksi kelapa sawit (Elaeis guineensis Jacq) di dataran tinggi. Jurnal Agrikultura, 32(1), 37–42.
  8. Haridjaja, O., Baskoro, D. P. T. & Setianingsih, M. (2013). Perbedaan nilai kadar air kapasitas lapang berdasarkan metode Alhricks, drainase bebas dan pressure plate pada berbagai tekstur tanah dan hubungannya dengan pertumbuhan tanaman bunga matahari (Helianthus annuus L.). Jurnal Ilmu Tanah dan Lingkungan, 15(2), 52. DOI: https://doi.org/10.29244/jitl.15.2.52-59.
  9. Hermawan, B. (2004). Penetapan kadar air tanah melalui pengukuran sifat dielektrik pada ber-bagai tingkat kepadatan. Jurnal Ilmu-Ilmu Pertanian Indonesia, 6(2), 66–74.
  10. Hou D, Bolan NS, Tsang DCW, Kirkham MB, O'Connor D. (2020). Sustainable soil use and management: An interdisciplinary and systematic approach. Sci Total Environ. DOI: https://doi.org/10.1016/j.scitotenv.2020.138961.
  11. Kalembiro, M., Rajamuddin, U. A. & Zaenuddin, R. (2018). Karakteristik fisik tanah pada berbagai kelerengan DAS Poboya Kota Palu. J. Agrotekbis, 6(6), 748–756.
  12. Khodijah, S., & Soemarno, S. (2019). Studi kemampuan tanah menyimpan air tersedia di sentra bawang putih Kecamatan Pujon, Kabupaten Malang. Jurnal Tanah dan Sumberdaya Lahan, 6(2), 1405–1414. DOI: https://doi.org/10.21776/ub.jtsl.2019.006.2.21.
  13. Megayanti, L., Zurhalena, Z., Junedi, H. & Fuadi, N. A. (2022). Kajian beberapa sifat fisika tanah yang diatanami kelapa sawit pada umur dan kelerengan yang berbeda. Jurnal Tanah dan Sumberdaya Lahan, 9(2), 413–420. DOI: https://doi.org/10.21776/ub.jtsl.2022.009.2.22.
  14. Mike, C. (2011). THE water relations and irrigation requirements of oil palm (Elaeis guineensis): A review. Experimental Agriculture. 47. 629 - 652. DOI: https://doi.org/10.1017/S0014479711000494.
  15. Phogat, V.K. & Tomar, V.S. & Dahiya, Rita. (2015). Soil Physical Properties. In book: Soil Science: An Introduction (pp.135-171). Edition: First Publisher: Indian Society of Soil Science Editors: Rattan R.K., Katyal J.C., Dwivedi B.S., Sarkar A.K., Bhattachatyya Tapan, Tarafdar J.C., Kukal S.S.
  16. Putri, E. L. (2021). Transformation of Paddy Soil Characteristics at Ex-Gold Mining Land in Sijunjung Regency,West Sumatera. 8(1), 179–188. DOI: https://doi.org/10.21776/ub.jtsl.2021.008.1.21.
  17. Putri, E. L., Adrinal, Gusmini, Barchia, M. F., & Herman, W. (2023). Studi tingkat erodibilitas tanah pada Sub DAS Lunto DAS Kuantan Provinsi Sumatera Barat. Prosiding Seminar Nasional Fakultas Pertanian UNS, 7(1), 1175–1184.
  18. Qing Xia, Haojie Han, Xiong Jinran & Caixia Zheng, Zhiliang Zhang, Huiqiang Huang & Qin Zhao. (2020). Research Progress of Soil Water Infiltration. E3S Web of Conferences. 189. 01006. DOI: https://doi.org/10.1051/e3sconf/202018901006.
  19. Refliaty, & Marpaung, E. J. (2010). Kemantapan agregat Ultisol pada Beberapa penggunaan lahan dan kemiringan lereng. Jurnal Hidrolitan, 1(2), 35–42.
  20. Robbins, N.E. & Dinneny, J.R. (2017). Growth is required for perception of water availability to pattern plant root branches. Preprint. DOI: https://doi.org/10.1101/097758.
  21. Siregar, F. A. (2023). Penggunaan pupuk organik dalam meningkatkan kualitas tanah dan produktivitas tanaman. Preprint. DOI : https://doi.org/10.31219/osf.io/fyz8v.
  22. Siringoringo, N.Y., Gusmara, H., Prawito, P., Prasetyo & Utami, K. (2023). Effect of slope and distance from oil palm stands on soil water ontent. TERRA Journal of Land Restoration, 6(1), 40-45. DOI: https://doi.org/10.31186/terra.6.1.40-45.
  23. Yulina, H., Saribun, D. S., Adin, Z. & Maulana, M. H. R. (2015). Hubungan antara kemiringan dan posisi lereng dengan tekstur tanah, permeabilitas dan erodibilitas tanah pada lahan tegalan di Desa Gunungsari, Kecamatan Cikatomas, Kabupaten Tasikmalaya. Agrikultura, 26(1), 15–22. DOI: https://doi.org/10.24198/agrikultura.v26i1.8456