Main Article Content

Abstract

Salinity stress is the major abiotic stress for crop production. The purpose of this study was to evaluate the effectiveness of zeolite on improving soil properties, the growth, and yield of Chinese cabbage. This pot experiment was conducted from September to November 2020 at the Research and Teaching Field of the Faculty of Agriculture, consisted of 6 treatment levels, i.e. (1) control, (2) soil + 6.9 g NaCl /10 kg soil, (3) soil + 6.9 g Na2SO4 /10 kg soil, (4) soil + 3.2 g zeolite /10 kg soil, (5) soil + 6.9 g NaCl /10 kg soil + 3.2 g zeolite /10 kg soil, and (6) soil + 6.9 g Na2SO4 /10 kg soil + 3.2 g zeolite /10 kg of soil, and arranged in a completely randomized design with 3 replications. The application of zeolite decreased the EC of salinized soil and increased the soil CEC. NaCl salinity stress reduced plant height (23%), number of leaves (22%), fresh weight of roots (165%), dry weight of roots (170%), stalk length (32%), and plant dry weight (131%), while Na2SO4 salinity stress only reduced the number of leaves (23%). The addition of zeolite to salinized NaCl soil increased stalk length (39%), plant fresh weight (172%), leaf fresh weight (174%), plant dry weight (133%), and leaf dry weight (23%), while to salinized Na2SO4 soil only increased plant dry weight (90%) and leaf dry weight (177%). The overall results show that the addition of zeolite can effectively ameliorate salinity stress due to NaCl.

Article Details

Author Biography

Marwanto Marwanto, Scopus ID: 57208667361; The University of Bengkulu

How to Cite
Romadhan, T. D., Marwanto, M., Murcitro, B. G., & Handajaningsih, M. (2022). Amelioration of Salinity Stressed Soil Using Natural Zeolite for Improving Soil Properties and Chinese Cabbage Agronomic Performances. Akta Agrosia, 25(1), 29–38. https://doi.org/10.31186/aa.25.1.29-38

References

  1. Aainaa, H. N., O. H. Ahmed, S. Kasim, and N.M.A. Majid. 2015. Reducing Egypt rock phosphate use in Zea mays cultivation on an acid soil using clinoptilolite zeolite. Sustainable Agriculture Research, 4 (1) : 56–66. http://doi.org/10.5539/sar.v4n1p56
  2. Arif, M.R, M.T. Islam, and A.H.K. Robin. 2019. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants. 8(7):192. https://doi.org/10.3390/plants8070192
  3. Ashraf, M. and T. McNeilly. 2004. Salinity tolerance in Brassica oilseeds. Crit. Rev. Plant Sci 23 (2) : 157–174. http://dx.doi.org/10.1080/17352680490433286
  4. Atikah, W. S. 2017. Characteristics of activated Gunung Kidul natural zeolite as a textile dye adsorbent media. Arena Textile 32: 17-24. http://dx.doi.org/10.31266/at.v32i1.2650 (in Indonesia).
  5. Cardon, G.E, J.G. Davis, T.A. Bauder, and R.M. Waskom. 2003. Managing Saline Soils. http://www.ext. colostate. edu/pubs/crops. html.
  6. Costa S.F., D. Martins, M. Agacka-Mo?doch, A. Czubacka, and S. de Sousa Araújo. 2018. Strategies to Alleviate Salinity Stress in Plants. In: Kumar V., Wani S., Suprasanna P., Tran LS. (eds) Salinity Responses and Tolerance in Plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_12
  7. Curtin, D., H. Steppuhn, and F. Selles. 1993. Plant responses to sulfate and chloride salinity: growth and ionic relations. Soil Sci. Soc.America J. 57(5): 1304-1310.
  8. Damodaran, T., V. Mishra, S. Jha, U. Pankaj, G. Gupta, and R. Gopal. 2019. Identification of rhizosphere bacterial diversity with promising salt tolerance, PGP traits and their exploitation for seed germination enhancement in sodic soil. Agric. Res 8: 36-43. https://doi.org/10.1007/s40003-018-0343-5
  9. Egamberdieva, D., S. Wirth, S.D. Bellingrath-Kimura, J. Mishra, and N.K. Arora. 2019. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front. Microbiol. https://doi.org/10:2791. 10.3389/fmicb.2019.02791
  10. Farooq, M., M. Hussain, A. Wakeel, and K.H.M. Siddique. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35: 461-81. https://doi.org/10.1007/s13593-015-0287-0
  11. Gangwar, P., R. Singh, M. Trivedi, and R.K. Tiwari. 2020. Sodic Soil: Management and Reclamation Strategies. In: Shukla V., Kumar N. (eds) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6358-0_8
  12. GhassemiSahebi, F., O. Mohammadrezapour, M. Delbari, A. KhasheiSiuki, H. Ritzema, and A. Cherati. 2020. Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum. Agricultural Water Management 234: 106-117. https://doi.org/10.1016/j.agwat.2020.106117
  13. Gibb, N. P., .J.J. Dynes, and W. Chang. 2017. Synergistic desalination of potash brine-impacted groundwater using a dual adsorbent. Sciences of the Total Environment 593: 99–108. https://doi.org/10.1016/j.scitotenv.2017.03.139
  14. Hanay, A, F. Büyüksonmez, F.M. Kiziloglu, and M.Y. Canbolat. 2013. Reclamation of saline-sodic soils with gypsum and MSW compost. Compost Science & Utilization. 12: 175–179. https://doi.org/10.1080/1065657X.2004.10702177
  15. Hanin, M., C. Ebel, M. Ngom, L. Laplaze , and K. Masmoudi. 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science 7:1787. https://doi.org/10.3389/fpls.2016.01787
  16. Indonesian Center for Research and Development of Agricultural Land Resources [ICRDALR] (2012) Land Resources Database on a Review Scale of 250,000. Center for Research and Development of Agricultural Land Resources, Bogor (in Indonesia).
  17. Jamil, M., S. Rehman, and E.S. Rha. 2007. Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pak. J. Bot 39(3) : 753-760.
  18. Jbir, N., W. Chaibi, S. Ammar, A. Jemmali, and A. Ayadi. 2001. Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. C. R. Acad. Sci 324: 863–868 https://doi.org/10.1016/S0764-4469(01)01355-5
  19. Juan, M., R.M. Rivero, L. Romero, and J.M. Ruiz. 2005. Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. J. Experimental Botany. 54(3):193-201.
  20. Karolinoerita, V. and W. Annisa. 2020. Land salinization and its problems in indonesia. J. Sumberdaya Lahan14 (2): 91-99. https://doi.org/10.21082/jsdl.v14n2.2020.91-99 (in Indonesia).
  21. Kavoosi, M. 2007. Effects of zeolite application on rice yield, nitrogen recovery, and nitrogen use efficiency. Comm.Soil Sci.Plant Anal 38(2) : 69-76.
  22. Khan, A. Z., H. Khan, R. Khan, S. Nigar, B. Saeedi, H. Gul, Amanullah, S. Wahab, A. Muhhamad, M. Ayub, N. Matsue, and T. Henmi. 2011. Morphology and yield of soybean grown on allophanic soil as influenced by synthetic zeolite application. Pak. J. Bot 43(4): 2099-2107.
  23. Koswara, E. 2007. The technique of testing the yield of several shallot varieties in tidal lands of South Sumatra. Buletin Teknik Pertanian 12 (1) : 1-3 (in Indonesia).
  24. Leogrande, R. and C. Vitti. 2019. Use of organic amendments to reclaim saline and sodic soils: a review. Arid Land Research & Management 33 (1): 1-21. https://doi.org/10.1080/15324982.2018.1498038
  25. Li, X. G., F. M. Li, Q. Ma, and Z.J. Cui. 2006. Interactions of NaCl and Na2SO4 on soil organic C mineralization after addition of maize straws. Soil Biology and Biochemistry 38: 2328-2335. https://doi.org/10.1016/j.soilbio.2006.02.015
  26. Liu, G.M, X.C. Zhang, X.P. Wang, H.B. Shao, J.S. Yang, and X.P. Wang. 2017. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture Ecosystems & Environment 237: 274–279. https://doi.org/10.1016/j.agee.2017.01.004
  27. Mathur, N., J. Singh, S. Bohra, A. Bohra, and A. Vyas. 2006. Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. Am. J. Plant Physiol. 1(2) : 210-213.
  28. Micu, D., C. Proca, C. Ioana, C. Podaru, and G. Burtica. 2005. Improvement possibilities of soil quality. Chem Bull ‘Politehnica 50 (64) : 108-111.
  29. Mitran, T., K.M. Pabitra, B. Nirmalendu, B. Sunanda, and M. Biswapati. 2016. Organic amendments influence on soil biological indices and yield in rice-based cropping system in coastal sundarbans of India. Communications in Soil Science & Plant Analysis 48: 170–185. https://doi.org/10.1080/00103624.2016.1254229
  30. Mor, R. P. and H.R. Manchanda. 1992. Influence of phosphorus on the tolerance of table pea to chloride and sulfate salinity in a sandy soil. Arid Land Research and Management 6(1) : 41-52.
  31. Mukhtar, S., B.S. Mirza, S. Mehnaz, M.S. Mirza, J. Mclean, and K.A. Malik. 2018. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World Journal of Microbiology and Biotechnology 34: 136. https://doi.org/10.1007/s11274-018-2509-5
  32. Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environt 25:239-250.
  33. Muscolo, A,. M. Sidari, M.R. Panuccio, C. Santonoceto, F. Orsini, and S.D. Pascale. 2010. Plant responses in saline and arid environments: an overview. The European J Plant Sciences and Biotechnology. 5(2): 1-11.
  34. Neumann, P. 1997. Salinity resistance and plant growth revisited. Plant. Cell & Environment 20(9) : 1193-1198.
  35. Niamat, B, M. Naveed, Z. Ahmad, M. Yaseen, A. Ditta, A. Mustafa, and M. Xu. 2019. Calcium-Enriched Animal Manure Alleviates the Adverse Effects of Salt Stress on Growth, Physiology and Nutrients Homeostasis of Zea mays L. Plants 8 (11): 480. https://doi.org/10.3390/plants8110480
  36. Noori, M., M. Zendehdel, and A. Ahmadi. 2006. Using natural zeolite for the improvement of soil salinity and crop yield. Toxicological & Environmental Chemistry 88 (1) : 77-84. https://doi.org/10.1080/02772240500457928.
  37. Provin, T. and J.L. Pitt. 2017. Managing Soil Salinity. Texas A & M Agrilife Extension Service. Page 1-5.
  38. Puvanitha, S and S. Mahendran. 2017. Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Scholars Journal of Agriculture and Veterinary Sciences 4(4) : 126-131. https://doi.org/10.21276/sjavs
  39. Ranjbar, F. and M. Jalali. 2015. The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil. Environmental Monitoring and Assesment. 187: 683–705. https://doi.org/10.1007/s10661-015-4894-7
  40. Shahid, S.A, M. Zaman, and L. Heng. 2018. Introduction to soil salinity, sodicity and diagnostics techniques, Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, 1-42. https://doi.org/10.1007/978-3-319-96190-3
  41. Subiramani, S., S. Ramalingam, T. Muthu, S.H. Nile, and B. Venkidasamy. 2020. Development of Abiotic Stress Tolerance in Crops by Plant Growth-Promoting Rhizobacteria (PGPR). In: Kumar M., Kumar V., Prasad R. (eds) Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2576-6_8
  42. Suwardi. 1998. The Mineralogical and Chemical Properties of Natural Zeolite and Their Application Effect for Soil Amandement. A Thesis for the Degree of Master. Laboratory of Soil Science. Departemen Of Agriculture Chemistry, Tokyo University of Agriculture.
  43. Taffouo, V. D., O.F. Wamba, E. Youmbi, G.V. Nono, and A. Akoa. 2010. Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranea (L.) Verdc.) landraces grown under saline conditions. International Journal of Botany 6(1) : 53-58.
  44. Trivedi, P. Y., K. Singh, U. Pankaj, S.K. Verma, R.K. Verma, and D.D. Patra. 2017. Effect of organic amendments and microbial application on sodic soilproperties and growth of an aromatic crop. Ecological Engineering 102: 127–136. https://doi.org/ 10.1016/j.ecoleng.2017.01.046
  45. Wajima, T., T. Shimizu, T. Yamato, and Y. Ikegami. 2007. A study on ion exchange of natural zeolites with different origins in NaCl. Ocean Thermal Energy Conversion 13: 63–8.
  46. Wajima, T., T. Shimizu, T. Yamato, and Y. Ikegami. 2010. Removal of NaCl from seawater using natural zeolite. Toxicology & Environmant Chemistry 92 : 21–26. https://doi.org/10.1080/02772240902762958
  47. Wang, X., O. Ozdemir, M.A. Hampton, A.V. Nguyen, and D.D. Do. 2012. The Effect of Zeolite Treatment by Acids on Sodium Adsorption. Ratio of Coal Seam Gas Water. J Water Res 46 (16) : 5247- 5254. https://doi.org/10.1016/j.watres.2012.07.006
  48. Warmada, W. and A.D. Titisari. 2004. Agromineralogy (Mineralogy for Agricultural Sciences. Department of Geological Engineering, UGM Faculty of Engineering, pp. 1-75.
  49. West, G., D. Inzé, and G.T. Beemster. 2004. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135: 1050–1058. https://doi.org/ 10.1104/pp.104.040022
  50. Wibowo, E., M. Rokhmat, Sutisna, Khairurrijal, and M. Abdullah. 2017. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination 409: 146–156. https://doi.org/10.1016/j.desal.2017.01.026
  51. Yang, L., X. Bian, R. Yang, C. Zhou, and B. Tang. 2018. Assessment of organic amendments for improving coastal saline soil. Land Degradation & Development 29(9): 3204-3211. https://doi.org/10.1002/ldr.3027
  52. Zhou, Y., N.Y. Tang, L.J. Huang, Y.J. Zhao, X.Q. Tang, and K.C. Wang. 2018. Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of SchizonepetaTenuifolia Briq. Int. J. Mol. Sci 19: 252. https://doi.org/10.3390/ijms19010252
  53. Zörb, C., C.M. Geilfus, and K.J. Dietz. 2019. Salinity and crop yield. Plant Biology 21: 31-38. https://doi.org/10.2134/agronmonogr38.c3