Main Article Content

Abstract

Smallholder sago plantations generally use simple technology, resulting in the determination of harvest time based solely on the physical appearance of plants. This study aims to identify the agronomic characteristics of sago that influence starch yield. The research was conducted on smallholder sago plantations, and samples of sago plants were collected at four harvest phases based on local customs: Dewasa, Jantung, Rusa, and Bunga. Observations on agronomic characteristics included the number of suckers, plant height, pith diameter, number of leaves, number of leaf scars, number of leaflets, leaflet length, and leaflet width. ANOVA and multiple comparisons were utilized to identify differences between treatments in starch yield. Regression analysis was employed to establish the relationship between starch yield and agronomic characteristics, while path analysis determined the direct/indirect effects of agronomic characteristics on starch yield. The results indicated that the optimal harvest time is during the Jantung and Rusa phases. The agronomic components that significantly influence sago starch yield are pith diameter and leaf scars. According to the coefficient of determination value, the production model can be expressed as Y = -63.26 + 2.44x1 (R2=37%). To enhance starch yield, it is crucial to improve plant spacing. When the plant spacing is too close, with a population density exceeding 200 clumps/ha, overlapping leaves occur, negatively impacting sago starch formation. This negative effect intensifies with an increase in the number of leaves and the size of leaflets in terms of length and width.


Keywords: sago plantations, agronomic characteristics, harvest time determination, starch yield, smallholder agriculture

Article Details

How to Cite
Suswanto, I., Maherawati, M., & Sunarti, S. (2023). Agronomic Characteristics and Harvest Time as Determinants of Starch Production in Smallholder Sago Palm Plantations. Akta Agrosia, 26(2), 79–86. Retrieved from https://ejournal.unib.ac.id/Agrosia/article/view/30200

References

  1. Ahmad, F., M. H. Bintoro, and Supijatno. 2016. Morfologi dan Produksi Beberapa Aksesi Sagu (Metroxylon spp.) di Distrik Iwaka, Kabupaten Mimika, Papua Morphology and Production of Some Sago Palm Accessions in Iwaka, Mimika District, Papua Province. Buletin Palma, 17(2): 115–125.
  2. Anggraeni, D. dan J.M. Ngantung. 2018. Kajian Kuat Tekan Beton Menggunakan Campuran Tepung Sari Sagu Sebagai Bahan Tambah Agregat Halus. Portal Sipil, 7(2): 9–30.
  3. Badan Restorasi Gambut. 2018. Profil Desa Peduli Gambut: Desa Mengkalang Jambu Kecamatan Kubu Raya.
  4. Bintoro, M. H., M. I. Nurulhaq, A.J. Pratama, F. Ahmad, and L. Ayulia. 2018. Growing area of sago palm and its environment. In Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. Springer Singapore. https://doi.org/10.1007/978-981-10-5269-9_2
  5. Botanri, S. 2010. Struktur Populasi Tumbuhan Sagu (Metroxylon spp.) di Pulau Seram Provinsi Maluku Structure population of sago in seram island, Maluku. Jurnal Agrohut, 1(1): 10-15. https://doi.org/10.51135/agh.v1i1.25
  6. Bujang, K. 2010. Production And Processing Of Sago: A Food And Fuel Alternative. In International Seminar on Sago & Spices for Food Security. Ambon. Rep. Indonesia.
  7. Fatah, A., A. Rahmi, and M.P. Biantary 2015. Tinjauan Potensi Tanaman Sagu (Metroxylon Sagu Rottb) Sebagai Komoditas Unggulan Di Kabupaten Paser. Media Sains, 8(2): 258–167.
  8. Flach, M. 1997. Sago palm: Metroxylon sagu Rottb. IPGRI. https://www.researchgate.net/publication/245257084
  9. Flach, M. and D.L. Schuiling. 1989. Revival of an ancient starch crop: a review of the agronomy of the sago palm. Agroforestry Systems. 7:259-281.
  10. Hastuty, S. 2016. Pengolahan Ulat Sagu (Rhynchophorus ferruginenes) di Kelurahan Bosso Kecamatan Walenrang Utara Kabupaten Luwu. Jurnal Perspektif. 1(1):12-19. www.journal.unismuh.ac.id/perspektif
  11. Naim, H. M., A.N. Yaakub and D.A.A. Hamdan. 2016. Commercialization of Sago through Estate Plantation Scheme in Sarawak: The Way Forward. Int. J. Agron. Article ID 8319542, 6 p. https://doi.org/10.1155/2016/8319542
  12. Novarianto, H., I. Maskromo, M.A. Tulalo, E.T. Tenda, J. Kumaunang, D.S. Pandin, and S. Mawardi. 2020. Karakteristik dan Potensi Produksi Pati Varietas Sagu Bestari. Buletin Palma, 21(1): 29–37.
  13. Sari, D. R., L. Asrul, R. Sjahril and K. Osozawa. 2020. Path coefficient analysis for growth characters of sago palm related to trunk formation at three years after transplanting. OP Conf. Ser.: Earth Environ. Sci. 486(1):7p. https://doi.org/10.1088/17551315/486/1/012010
  14. Sulaiman, N., N.S.K. Khairuddin, M. Ismail, C.B. Yeoh, and F.K.A. Bustamam. 2021. A life cycle assessment (LCA) approach on the production of sago sucker for cultivation. Borneo Journal of Resource Science and Technology, 11(1): 64–72. https://doi.org/10.33736/bjrst.2948.2021
  15. Taskirawati, I., Rosdiana and Baharuddin. 2020. Sago pulp and rice husk as an alternative material for the cultivation of oyster mushroom (Pleurotus ostreatus). OP Conf. Ser.: Earth Environ. Sci. 486(1):7p. https://doi.org/10.1088/1755-1315/486/1/012107
  16. Vita. 2017. Etnobotani Sagu (Metroxylon sagu) di Lahan Basah Situs Air Sugihan, Sumatera Selatan: Warisan Budaya Masa Sriwijaya. Kalpataru: Majalah Arkeologi, 26(2): 107–122.
  17. Zhu, F. 2019. Recent advances in modifications and applications of sago starch. Food Hydrocolloids, 96: 412–423. https://doi.org/10.1016/j.foodhyd.2019.05.035