Main Article Content

Abstract

The impact of Azolla compost (AC) substitution for synthetic N fertilizer (NF) on nitrate leaf content and agronomic performances of green onion in Ultisols have not been well understood. Therefore, this study aimed to assess the effects of equal replacing NF with AC on growth, yield, and nitrate accumulation in the green onion leaf. The polybag trial was performed in June 2020 on the crop research farm of the Agriculture Faculty in a completely randomized design with six treatments in five replications. Green onion was subjected to five 92 kg ha−1 N equal combinations of NF and AC, i.e., NF100 (100% NF+0% AC), NF75 +AC25 (75% NF+25% AC), NF50 +AC50 (50% NF+50% AC), NF25 +AC75 (25% NF+75% AC), and NF0 +AC100 (0% NF+100 % AC) and no NF and AC as a control. Results demonstrated that NF+AC treatments significantly improved plant height, leaf number, tiller number, stem diameter, and plant fresh weight. Treatment of NF25+AC75 resulted in similar responses to the recommended dose of N fertilizer, as evidenced by plant height, number of green leaves, root fresh weight, shoot dry weight, tiller numbers per hill, stem diameter, shoot fresh weight, and plant fresh weight. Lower leaf nitrate contents occurred under increased substitution of NF with AC. Thus, partial substitution of NF with AC could be a sustainable option for improving growth and yield while reducing nitrate accumulation in the leaf of green onion in Ultisols.


Keywords: azolla compost substitution, integrated nutrient management, synthetic fertilizer reduction,  green onion agronomic performance, Ultisols


Keywords: azolla compost, green onion, integrated nutrient management, chemical fertilizer reduction,  Ultisols

Article Details

How to Cite
Chiristiana, Marwanto, Marlin, Merakati Handajaningsih, & Septiana Anggraini. (2023). Equal Substitution of Synthetic Nitrogen Fertilizer with Azolla Compost on Growth, Yield, and Nitrate Content of Green Onion in Ultisols . Akta Agrosia, 26(2), 87–97. Retrieved from https://ejournal.unib.ac.id/Agrosia/article/view/30518

References

  1. Almasi, A., M. Mohammadi, A. Dargahi, F. Amirian, Z.J. Motlagh, G. Ahmadidoust, M. Noori. 2018. Nitrogenous Contamination in Iranian Vegetables: A Review. Pol. J. Environ. Stud. 27(6): 1-12. http://doi.org.10.15244/pjoes/81064
  2. Amare, G. 2020. Review on Mineral Nutrition of Onion. The Open Biotechnol. J.14(1). https://doi.org/10.2174/1874070702014010134
  3. Balittanah, 2005. Technical Guidelines for Soil, Plant, Water, and Fertilizer Chemical Analysis. Soil Research Center, Agency for Agricultural Research and Development. Ministry of Agriculture. Bogor (in Indonesia).
  4. Brady, N. C. and R.R. Weil. 2008. The Nature and Properties of Soils, 14th edn. Prentice Hall.
  5. Braun-Howland, E.B. and S.A. Nierzwicki-Bauer. 2018. Azolla-Anabaena symbiosis: Biochemistry, physiology, ultrastructure, and molecular biology. In CRC Handbook of Symbiotic Cyanobacteria; CRC Press: Boca Raton, FL, USA, pp. 65–117.
  6. Brewster, J.L. 1994. Onions and other vegetable Alliums. Wallingford, UK: CAB International.
  7. Castro, R., R. Novo, and R. Castro. 2003. Influence of Azolla-anabaena symbiosis on rice (Oryza sativa L.) crop as a nutritional alternative. Cultiv. Trop. 24: 77–82.
  8. Dangour, A.D., S.K. Dodhia, A. Hayter, and E. Allen. 2009. Nutritional quality of organic foods: A systematic review. Am. J. Clin. Nutr. 90: 680–685. https://doi.org/10.3945/ajcn.2009.28041
  9. Gadallah, F.M., N.A. El-Sawah, H.E.E. Belal, A. Majrashi, A.M. El-Tahan, M.T. El-Saadony, A.S. Elrys, F.M.A. El-Saadony. 2022. Nitrogen-molybdenum-manganese co-fertilization reduces nitrate accumulation and enhances spinach (Spinacia oleracea L.) yield and its quality. Saudi J. Biol. Sci. 29: 2238–2246. https://doi.org/10.1016/j.sjbs.2021.11.036
  10. Geng, Y., G. Cao, L. Wang, and S. Wang. 2019. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PloS one. 14 (7): e0219512. https://doi.org/10.1371/journal.pone.0219512
  11. Ghodke, P.H., P.S. Andhale, U.M. Gijare, A. Thangasamy, Y.P. Khade, V. Mahajan and M. Singh. 2018. Physiological and biochemical responses in onion crop to drought stress. Int. J. Curr. Microbiol. App. Sci 7(1): 2054-2062. https://doi.org/10.20546/ijcmas.20108.701.247.
  12. Hegde, D.M. 1986. Effect of irrigation regimes on dry matter production, yield, nutrient uptake and water use of onion. Indian J. Agron. 31:343–348.
  13. Herencia, J.F., P.A. García-Galavís, J.A.R. Dorado, and C. Maqueda. 2011. Comparison of nutritional quality of the crops grown in an organic and conventional fertilized soil. Sci. Hortic. 129: 882–888. https://doi.org/10.1016/j.scienta.2011.04.008
  14. Indonesian Statistic Agency. 2019. Statistical Yearbook of Indonesia 2019. BPS-Statistics Indonesia, Jakarta, Indonesia (in Indonesia).
  15. Iqbal, A., L. He, A. Khan, S.Wei, K. Akhtar, I.Ali, S. Ullah, F. Munsif, Q. Zhao, L. Jiang. 2019. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy. 9: 651. https://doi.org/10.3390/agronomy9100651
  16. Khozuei, S., M.H. Asil, A.M. Khomami, S.K.A Zare, and G.M. Mammadov. 2022. Effects of Azolla Compost Versus Peat and Cocopeat on the Growth and Nutrition of Chrysanthemum (Chrysanthemum morifolium) in Pot Culture. J. Ornament. Plants. 12(3): 213-222. https://doi.org/20.1001.1.28210093.2022.12.3.4.2
  17. Kiani, A., K. Sharafi, A.K. Omer, B.K. Matin, R. Davoodi, B. Mansouri, H. Sharafi, H. Soleimani, T. Massahi, E. Ahmadi. 2022. Accumulation and human health risk assessment of nitrate in vegetables irrigated with different irrigation water sources- transfer evaluation of nitrate from soil to vegetables. Environ. Res. 205: 112527. https://doi.org/10.1016/j.envres.2021.112527
  18. Lesjak, M., I. Beara, N. Simin, et al. 2018. Antioxidantand anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods. 40: 68–75. https://doi.org/10.1016/j.jff.2017.10.047
  19. Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, London. p. 196.
  20. Marwanto, M., M.O. Silitinga, Y.H. Bertham, M. Handajaningsih, and P. Prasetyo. 2023. Azolla compost-based organomineral fertilizer for increasing N uptake, growth, and yield of green onion. AIP Conference Proceedings. 2583 (1). https://doi.org/10.1063/5.0116207
  21. Min, W., H. Guo, G. Zhou, W. Zhang, L. Ma, J. Ye, and Z. Hou. 2014. Root distribution and growth of cotton as affected by drip irrigation with saline water. Field Crops Res. 169: 1–10. https://doi.org/10.1016/j.fcr.2014.09.002
  22. Morra, L., M. Bilotto, D. Baldantoni, A. Alfani, and S. Baiano. 2021. A seven-year experiment in a vegetable crops sequence: Effects of replacing mineral fertilizers with biowaste compost on crop productivity, soil organic carbon and nitrates concentrations. Sci. Hortic. 290: 110534. https://doi.org/10.1016/j.scienta.2021.110534
  23. Ogbodo, E.N. 2011. Effect of crop residue on soil chemical properties and rice yield on an Ultisol at Abakaliki, Southeastern Nigeria. World J. Agric. Sci. 7:13–18.
  24. Rao, N.K.S. 2014. Response of Onion to Temperature Gradient on Growth and Biomass. In: Final Report of ICAR Emeritus Scientist Project Impact of Climate change and Climate Variability on Onion Productivity, Production and Quality, pp 18–23.
  25. Rao, N.K.S. 2016. Onion. In: N. Rao, K. Shivashankara, and L. Laxman (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2725-0_8
  26. Razavipour, T., S.S. Moghaddam, S. Doaei, S.A. Noorhosseini, and C.A. Damalas. 2018. Azolla (Azolla filiculoides) compost improves grain yield of rice (Oryza sativa L.) under different irrigation regimes. Agric. Water Manag. 209: 1–10. https://doi.org/10.1016/j.agwat.2018.05.020
  27. Santamaria, P. 2006. Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food. Agric. 86: 10–17. https://doi.org/10.1002/jsfa.2351
  28. Seleiman, M. F., O.M. Elshayb, A.M. Nada, S.A. El-leithy, L. Baz, B.A. Alhammad, and A.H. Mahdi. 2022. Azolla compost as an approach for enhancing growth, productivity and nutrient uptake of Oryza sativa L. Agronomy. 12(2): 416. https://doi.org/10.3390/agronomy12020416
  29. Seleiman, M.F. and M.S. Abdelaal. 2018. Effect of organic, inorganic and bio-fertilization on growth, yield and quality traits of some chickpea (Cicer arietinum L.) varieties. Egypt. J. Agron. 40: 105–117. https://doi.org/10.21608/AGRO.2018.2869.1093
  30. Singh, P. 1990. Use of Azolla in Asian agriculture. Appl. Agric. Res. 4: 149.
  31. Steel, R. G. D., J.H. Torrie, and D.A. Dickie. 1997. Principles and Procedures of Statistics-A Biometric Approach (3rd edn.). Toronto: McGraw-Hill Publishing Company.
  32. Subagyo H., N. Suharta, and A.B. Siswanto. 2000. Agricultural Soil in Indonesia, pp: 21-66, In Land Resources in Indonesia and Their Management. Center for Soil Research and Agroclimate, Bogor (in Indonesia).
  33. Tejada, M., M. Hernandez, and C. Garcia. 2009. Soil restoration using composted plant residues: Effects on soil properties. Soil Tillage Res. 102: 109–117. https://doi.org/10.1016/j.still.2008.08.004
  34. Uzo, J.O. and L. Currah. 1990. Cultural systems and agronomic practices in tropical climates. In: H.D. Rabinowitch and J.L. Brewster (eds), Onions and Allied Crops. II. Agronomy, Biotic Interactions, Pathology, and Crop Protection. CRC Press, Boca Raton, pp 49–62.
  35. Xin, X., S. Qin, J. Zhang, A. Zhu, W. Yang, X. Zhang. 2017. Yield, phosphorus use- efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res. 208: 27–33. https://doi.org/10.1016/j.fcr.2017.03.011
  36. Yang, G., H. Ji, H. Liu, Y Feng, Y. Zhang, L. Chen, Z. Guo. 2021. Nitrogen fertilizer reduction in combination with Azolla cover for reducing ammonia volatilization and improving nitrogen use efficiency of rice. Peer J, 9: 1–20. https://doi.org/10.7717/peerj.11077
  37. Yang, Y. J., T. Lei, W. Du, C.L. Liang, H.D. Li, and J.L. Lv. 2020. Substituting chemical fertilizer nitrogen with organic manure and comparing their nitrogen use efficiency and winter wheat yield. The J. Agric. Sci. 158(4): 262-268. https://doi.org/10.1017/S0021859620000544
  38. Zaman M.M., M.A. Rahman, T. Chowdhury, and M.A.H. Chowdhury. 2018. Effects of combined application of chemical fertilizer and vermicompost on soil fertility, leaf yield and stevioside content of stevia. J. Bangladesh Agric. Univ. 16:73–81. https://doi.org/10.3329/jbau.v16i1.36484
  39. Zhai, L., Z. Wang, Y. Zhai, L. Zhang, M. Zheng, H. Yao, L. Lv, H. Shen, J. Zhang, Y. Yao, X. Jia. 2022. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Till. Res. 217: 105287. https://doi.org/10.1016/j.still.2021.105287