Main Article Content
Abstract
Candlenut seed quality is an important aspect of plantation commodities used to export from Indonesia. But, this commodities have many problems with export processing, such as infection and destruction by pest microorganisms, especially caused by quarantined pest microorganisms. To enhance germination, beneficial microbes that produce secondary metabolites produce biostimulants, such as plant growth enhancement, increased nutrient uptake, and improved plant resilience to pest stress. This review highlights the most viable alternative to seed treatment for preventive quarantine using nanotechnology, such as nanomaterials based on secondary metabolites of candlenut seeds. Secondary metabolites from microbial antagonists are beneficial for increasing plant productivity and production, but seed production is still not widely known and performed. In addition, nanoparticles can be used to absorb nutrients from secondary metabolites that must be protected before export inspection by a quarantine agency. The results are generally positive, but more scientific information needs to be acquired for candlenut crops and under variable quarantine export inspection to understand the effects of seed treatments.
Keywords: candlenut seed, export, quarantine, nanotechnology
Article Details
Copyright (c) 2024 Ghani Husni Fata, Ruth Feti Rahayuniati, Agus Suroto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Calvo, H., I. Mendiara, E. Arias, A.P. Gracia, D. Blanco, et al. 2020. Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol. Technol. 166(March): 111208. doi: 10.1016/j.postharvbio.2020.111208.
- Camara, M.C., E.V.R. Campos, R.A. Monteiro, A. Do Espirito Santo Pereira, P.L. De Freitas Proença, et al. 2019. Development of stimuli-responsive nano-based pesticides: Emerging opportunities for agriculture. J. Nanobiotechnology 17(1): 1–19. doi: 10.1186/s12951-019-0533-8.
- Cardarelli, M., S.L. Woo, Y. Rouphael, and G. Colla. 2022. Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants 11(3). doi: 10.3390/plants11030259.
- Dahiri, D. 2022. Analisis Nilai Tambah Komoditas Unggulan Subsektor Perkebunan. J. Budg. Isu dan Masal. Keuang. Negara 7(1): 114–133. doi: 10.22212/jbudget.v7i1.122.
- Handayani, A., F.X. Wagiman, S. Indarti, and S. Suputa. 2019. Insect Quarantine Status in Association with Imported Commodities from Timor Leste Passed through Agricultural Quarantine Ware of Mota’ain-District of Belu. J. Perlindungan Tanam. Indones. 23(1): 75. doi: 10.22146/jpti.25885.
- Junaid, M., and A. Gokce. 2024. Global Agricultural Losses and Their Causes. Bull. Biol. Allied Sci. Res. 2024(1): 66. doi: 10.54112/bbasr.v2024i1.66.
- Kah, M., N. Tufenkji, and J.C. White. 2019. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14(6): 532–540. doi: 10.1038/s41565-019-0439-5.
- Khalish, F. 2023. Keunggulan Komparatif Dan Kompetitif Komoditas Rempah Indonesia Di Pasar Uni Emirat Arab. J. Multidisiplin Indones. 2(8): 2256–2276. doi: 10.58344/jmi.v2i8.441.
- Kumar, R., and A. Gupta. 2020. Seed-borne diseases of agricultural crops: Detection, diagnosis & management.
- Kumar, S., M. Nehra, N. Dilbaghi, G. Marrazza, S.K. Tuteja, et al. 2020. Nanovehicles for Plant Modifications towards Pest- and Disease-Resistance Traits. Trends Plant Sci. 25(2): 198–212. doi: 10.1016/j.tplants.2019.10.007.
- Kumar, R., and V.S. Rathor. 2020. Nature and types of damage by insect pests. J. Entomol. Res. 44(4): 639–646. doi: 10.5958/0974-4576.2020.00106.1.
- Kumar, R., and R. Vishwakarma. 2018. Preharvest Approaches to Control Insect Infestation in Fruit. Elsevier Inc.
- Li, P., Y. Huang, C. Fu, S.X. Jiang, W. Peng, et al. 2021. Eco‐friendly biomolecule‐nanomaterial hybrids as next‐generation agrochemicals for topical delivery. EcoMat Funct. Mater. Green Energy Environ. 3(5): 1–19. doi: https://doi.org/10.1002/eom2.12132.
- Maharana, C., V.K. Padala, A.B. Hubballi, M.N. Raj, A. Paschapur, et al. 2022. Sustainable Management of Potato Pests and Diseases: Secondary Metabolites of Microbials as Potential Pesticides (S.K. Chakrabarti, S. Sharma, and M.A. Shah, editors).
- Ministry of Agriculture. 2015. Permentan No. 51 Tahun 2015 tentang Perubahan Atas Permentan No. 93 Tahun 2011 tentang Jenis Organisme Pengganggu Tumbuhan Karantina. : 1–489.
- Ministry of Agriculture. 2020. Kepmentan 104 tahun 2020 tentang Komoditas Binaan Kementan.pdf. : 1–40. https://ditjenbun-ppid.pertanian.go.id/doc/16/Kepmentan 104 tahun 2020 tentang Komoditas Binaan Kementan (1).pdf.
- Mishra, S.K., and S. Singh. 2023. Plant Quarantine and its Importance in Agriculture. (November).
- Moruk, M.H.I., W. Tarna, and J. Umbu. 2021. Analysis of Income on the Candlenut Farming in Raimanus Village, Raimanuk District, Belu Regency. Agribus. J. 4(2): 0–5. doi: 10.31327/aj.v4i2.1609.
- Octoraningtyas, V. 2024. The Effect of The Determination of Plant Quarantine Installations and Inline Inspections On The Acceleration of Agricultural Commodity Exports In The Working Area of The Surabaya Agricultural Quarantine Center. J. Indones. Sos. Teknol. 5(3): 1260–1269. doi: 10.59141/jist.v5i3.975.
- Parwati, L.D., and Suparno. 2017. Pengaruh Massa Kemiri Terhadap Volume dan Karakterisasi Minyak Kemiri Hasil Pengolahan Tradisional sebagai Dasar Biofuel. J. Fis. 6: 378–384.
- Pawar, P., P. Kumari, M. Gadekar, and J. Mounika. 2023. Biological Control : Approaches and Applications (M.K. Mahla, S.
- Bhateja, S. Sachin, and H. Swami, editors). Biotech Books.
- Pawar, V.A., and S.L. Laware. 2018. Seed Priming A Critical Review. Int. J. Sci. Res. Biol. Sci. 5(5): 94–101. doi: 10.26438/ijsrbs/v5i5.94101.
- Pereira, A.D.E.S., H.C. Oliveira, L.F. Fraceto, and C. Santaella. 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11(2): 1–29. doi: 10.3390/nano11020267.
- Pulizzi, F. 2019. Nano in the future of crops. Nat. Nanotechnol. 14(6): 507. doi: 10.1038/s41565-019-0475-1.
- Putri, N., K. N, and I. Jamilah. 2020. Postharvest Fungi Attack on the Candlenut (Aleurites moluccana) Distribution Chain in Several Areas at North Sumatra. IOSR J. Pharm. Biol. Sci. e-ISSN 15(4): 27–34. doi: 10.9790/3008-1504022734.
- Ratnikova, T.A., R. Podila, A.M. Rao, and A.G. Taylor. 2015. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth. Sci. World J. 2015. doi: 10.1155/2015/419215.
- Samsu, A.K.A., A.N. Mukhlisa, and A.A. Nurnawati. 2022. Identifikasi sebaran tanaman kemiri berbasis pola agroforestri di Kabupaten Maros , Provinsi Sulawesi Selatan , Indonesia ( identification of candlenut plant distribution based on agroforestry patterns in Maros Regency , South Sulawesi Province , Indonesi. Agric. J. 5(1): 177–186.
- Sathyanarayana, N., and S. Latha. 2016. Plant pathogens in international trade: challenges to plant biosecurity. Indian Phytopathol. 69(4s): 683–689.
- Shakiba, S., C.E. Astete, S. Paudel, C.M. Sabliov, D.F. Rodrigues, et al. 2020. Emerging investigator series: Polymeric nanocarriers for agricultural applications: Synthesis, characterization, and environmental and biological interactions. Environ. Sci. Nano 7(1): 37–67. doi: 10.1039/c9en01127g.
- Shelar, A., S.H. Nile, A.V. Singh, D. Rothenstein, J. Bill, et al. 2023. Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. Springer Nature Singapore.
- Shintawati, Y.R. Widodo, and D. Ermaya. 2021. Yield and Quality Improvement of Candlenut Oil by Microwave Assisted Extraction (MAE) Methods. IOP Conf. Ser. Earth Environ. Sci. 1012(1). doi: 10.1088/1755-1315/1012/1/012024.
- Soesanto, L., E. Mugiastuti, and A. Manan. 2019. Raw Secondary Metabolites Application of Two Trichoderma harzianum Isolates towards Vascular Streak Dieback on Cocoa Seedlings. Pelita Perkeb. (a Coffee Cocoa Res. Journal) 35(1): 22–32. doi: 10.22302/iccri.jur.pelitaperkebunan.v35i1.346.
- Susilowati, A., A. Dalimunthe, H.H. Rachmat, D. Elfiati, P.Y. Sinambela, et al. 2020. Morphology and germination of the candlenut seed (Aleurites moluccana) from Samosir Island-North Sumatra. IOP Conf. Ser. Earth Environ. Sci. 454(1). doi: 10.1088/1755-1315/454/1/012156.
- Tarigan, N., J. Silalahi, and U. Sihotang. 2024. Formulation of Recipes and Organoleptic Properties of Tinuktuk as Simalungun Traditional Food. J. Heal. Sains 5(2): 85–94. doi: 10.46799/jhs.v5i2.1228.
- Tasrif, A., M. Taufik, and N. Nazaruddin. 2021. New Paradigm on Plant Quarantine System for Protection of Biological Diversity in Indonesia. J. Perlindungan Tanam. Indones. 25(1): 1. doi: 10.22146/jpti.62605.
- Ullah, A., A. Bano, and H.T. Janjua. 2020. Microbial Secondary Metabolites and Defense of Plant Stress. Microb. Serv. Restor. Ecol. (January): 37–46. doi: 10.1016/B978-0-12-819978-7.00003-8.
- Vojvodić, M., and R. Bažok. 2021. Future of insecticide seed treatment. Sustain. 13(16). doi: 10.3390/su13168792.
- Waskow, A., A. Howling, and I. Furno. 2021. Mechanisms of Plasma-Seed Treatments as a Potential Seed Processing Technology. Front. Phys. 9(April): 1–23. doi: 10.3389/fphy.2021.617345.
- Wonggo, D., Y.C. Agustin, S. Wongso, and S.E.D. Putra. 2023. Effects of the candlenut seed oil supplementation on the fatty acids profile of Swiss Webster mice. Asian J. Nat. Prod. Biochem. 21(1): 26–33. doi: 10.13057/biofar/f210105.
References
Calvo, H., I. Mendiara, E. Arias, A.P. Gracia, D. Blanco, et al. 2020. Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol. Technol. 166(March): 111208. doi: 10.1016/j.postharvbio.2020.111208.
Camara, M.C., E.V.R. Campos, R.A. Monteiro, A. Do Espirito Santo Pereira, P.L. De Freitas Proença, et al. 2019. Development of stimuli-responsive nano-based pesticides: Emerging opportunities for agriculture. J. Nanobiotechnology 17(1): 1–19. doi: 10.1186/s12951-019-0533-8.
Cardarelli, M., S.L. Woo, Y. Rouphael, and G. Colla. 2022. Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants 11(3). doi: 10.3390/plants11030259.
Dahiri, D. 2022. Analisis Nilai Tambah Komoditas Unggulan Subsektor Perkebunan. J. Budg. Isu dan Masal. Keuang. Negara 7(1): 114–133. doi: 10.22212/jbudget.v7i1.122.
Handayani, A., F.X. Wagiman, S. Indarti, and S. Suputa. 2019. Insect Quarantine Status in Association with Imported Commodities from Timor Leste Passed through Agricultural Quarantine Ware of Mota’ain-District of Belu. J. Perlindungan Tanam. Indones. 23(1): 75. doi: 10.22146/jpti.25885.
Junaid, M., and A. Gokce. 2024. Global Agricultural Losses and Their Causes. Bull. Biol. Allied Sci. Res. 2024(1): 66. doi: 10.54112/bbasr.v2024i1.66.
Kah, M., N. Tufenkji, and J.C. White. 2019. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14(6): 532–540. doi: 10.1038/s41565-019-0439-5.
Khalish, F. 2023. Keunggulan Komparatif Dan Kompetitif Komoditas Rempah Indonesia Di Pasar Uni Emirat Arab. J. Multidisiplin Indones. 2(8): 2256–2276. doi: 10.58344/jmi.v2i8.441.
Kumar, R., and A. Gupta. 2020. Seed-borne diseases of agricultural crops: Detection, diagnosis & management.
Kumar, S., M. Nehra, N. Dilbaghi, G. Marrazza, S.K. Tuteja, et al. 2020. Nanovehicles for Plant Modifications towards Pest- and Disease-Resistance Traits. Trends Plant Sci. 25(2): 198–212. doi: 10.1016/j.tplants.2019.10.007.
Kumar, R., and V.S. Rathor. 2020. Nature and types of damage by insect pests. J. Entomol. Res. 44(4): 639–646. doi: 10.5958/0974-4576.2020.00106.1.
Kumar, R., and R. Vishwakarma. 2018. Preharvest Approaches to Control Insect Infestation in Fruit. Elsevier Inc.
Li, P., Y. Huang, C. Fu, S.X. Jiang, W. Peng, et al. 2021. Eco‐friendly biomolecule‐nanomaterial hybrids as next‐generation agrochemicals for topical delivery. EcoMat Funct. Mater. Green Energy Environ. 3(5): 1–19. doi: https://doi.org/10.1002/eom2.12132.
Maharana, C., V.K. Padala, A.B. Hubballi, M.N. Raj, A. Paschapur, et al. 2022. Sustainable Management of Potato Pests and Diseases: Secondary Metabolites of Microbials as Potential Pesticides (S.K. Chakrabarti, S. Sharma, and M.A. Shah, editors).
Ministry of Agriculture. 2015. Permentan No. 51 Tahun 2015 tentang Perubahan Atas Permentan No. 93 Tahun 2011 tentang Jenis Organisme Pengganggu Tumbuhan Karantina. : 1–489.
Ministry of Agriculture. 2020. Kepmentan 104 tahun 2020 tentang Komoditas Binaan Kementan.pdf. : 1–40. https://ditjenbun-ppid.pertanian.go.id/doc/16/Kepmentan 104 tahun 2020 tentang Komoditas Binaan Kementan (1).pdf.
Mishra, S.K., and S. Singh. 2023. Plant Quarantine and its Importance in Agriculture. (November).
Moruk, M.H.I., W. Tarna, and J. Umbu. 2021. Analysis of Income on the Candlenut Farming in Raimanus Village, Raimanuk District, Belu Regency. Agribus. J. 4(2): 0–5. doi: 10.31327/aj.v4i2.1609.
Octoraningtyas, V. 2024. The Effect of The Determination of Plant Quarantine Installations and Inline Inspections On The Acceleration of Agricultural Commodity Exports In The Working Area of The Surabaya Agricultural Quarantine Center. J. Indones. Sos. Teknol. 5(3): 1260–1269. doi: 10.59141/jist.v5i3.975.
Parwati, L.D., and Suparno. 2017. Pengaruh Massa Kemiri Terhadap Volume dan Karakterisasi Minyak Kemiri Hasil Pengolahan Tradisional sebagai Dasar Biofuel. J. Fis. 6: 378–384.
Pawar, P., P. Kumari, M. Gadekar, and J. Mounika. 2023. Biological Control : Approaches and Applications (M.K. Mahla, S.
Bhateja, S. Sachin, and H. Swami, editors). Biotech Books.
Pawar, V.A., and S.L. Laware. 2018. Seed Priming A Critical Review. Int. J. Sci. Res. Biol. Sci. 5(5): 94–101. doi: 10.26438/ijsrbs/v5i5.94101.
Pereira, A.D.E.S., H.C. Oliveira, L.F. Fraceto, and C. Santaella. 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11(2): 1–29. doi: 10.3390/nano11020267.
Pulizzi, F. 2019. Nano in the future of crops. Nat. Nanotechnol. 14(6): 507. doi: 10.1038/s41565-019-0475-1.
Putri, N., K. N, and I. Jamilah. 2020. Postharvest Fungi Attack on the Candlenut (Aleurites moluccana) Distribution Chain in Several Areas at North Sumatra. IOSR J. Pharm. Biol. Sci. e-ISSN 15(4): 27–34. doi: 10.9790/3008-1504022734.
Ratnikova, T.A., R. Podila, A.M. Rao, and A.G. Taylor. 2015. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth. Sci. World J. 2015. doi: 10.1155/2015/419215.
Samsu, A.K.A., A.N. Mukhlisa, and A.A. Nurnawati. 2022. Identifikasi sebaran tanaman kemiri berbasis pola agroforestri di Kabupaten Maros , Provinsi Sulawesi Selatan , Indonesia ( identification of candlenut plant distribution based on agroforestry patterns in Maros Regency , South Sulawesi Province , Indonesi. Agric. J. 5(1): 177–186.
Sathyanarayana, N., and S. Latha. 2016. Plant pathogens in international trade: challenges to plant biosecurity. Indian Phytopathol. 69(4s): 683–689.
Shakiba, S., C.E. Astete, S. Paudel, C.M. Sabliov, D.F. Rodrigues, et al. 2020. Emerging investigator series: Polymeric nanocarriers for agricultural applications: Synthesis, characterization, and environmental and biological interactions. Environ. Sci. Nano 7(1): 37–67. doi: 10.1039/c9en01127g.
Shelar, A., S.H. Nile, A.V. Singh, D. Rothenstein, J. Bill, et al. 2023. Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. Springer Nature Singapore.
Shintawati, Y.R. Widodo, and D. Ermaya. 2021. Yield and Quality Improvement of Candlenut Oil by Microwave Assisted Extraction (MAE) Methods. IOP Conf. Ser. Earth Environ. Sci. 1012(1). doi: 10.1088/1755-1315/1012/1/012024.
Soesanto, L., E. Mugiastuti, and A. Manan. 2019. Raw Secondary Metabolites Application of Two Trichoderma harzianum Isolates towards Vascular Streak Dieback on Cocoa Seedlings. Pelita Perkeb. (a Coffee Cocoa Res. Journal) 35(1): 22–32. doi: 10.22302/iccri.jur.pelitaperkebunan.v35i1.346.
Susilowati, A., A. Dalimunthe, H.H. Rachmat, D. Elfiati, P.Y. Sinambela, et al. 2020. Morphology and germination of the candlenut seed (Aleurites moluccana) from Samosir Island-North Sumatra. IOP Conf. Ser. Earth Environ. Sci. 454(1). doi: 10.1088/1755-1315/454/1/012156.
Tarigan, N., J. Silalahi, and U. Sihotang. 2024. Formulation of Recipes and Organoleptic Properties of Tinuktuk as Simalungun Traditional Food. J. Heal. Sains 5(2): 85–94. doi: 10.46799/jhs.v5i2.1228.
Tasrif, A., M. Taufik, and N. Nazaruddin. 2021. New Paradigm on Plant Quarantine System for Protection of Biological Diversity in Indonesia. J. Perlindungan Tanam. Indones. 25(1): 1. doi: 10.22146/jpti.62605.
Ullah, A., A. Bano, and H.T. Janjua. 2020. Microbial Secondary Metabolites and Defense of Plant Stress. Microb. Serv. Restor. Ecol. (January): 37–46. doi: 10.1016/B978-0-12-819978-7.00003-8.
Vojvodić, M., and R. Bažok. 2021. Future of insecticide seed treatment. Sustain. 13(16). doi: 10.3390/su13168792.
Waskow, A., A. Howling, and I. Furno. 2021. Mechanisms of Plasma-Seed Treatments as a Potential Seed Processing Technology. Front. Phys. 9(April): 1–23. doi: 10.3389/fphy.2021.617345.
Wonggo, D., Y.C. Agustin, S. Wongso, and S.E.D. Putra. 2023. Effects of the candlenut seed oil supplementation on the fatty acids profile of Swiss Webster mice. Asian J. Nat. Prod. Biochem. 21(1): 26–33. doi: 10.13057/biofar/f210105.