Main Article Content

Abstract

Coastal sandy soil has a low capacity to hold water and nutrients, trigerring high doses of fertilizer application. Therefore, this study aims to determine the optimal mixture of urea and zeolite-based slow-release fertilizers (SRF) that can reduce application of inorganic fertilizer while improving nitrogen use efficiency (NUE), growth dynamics, and yield of pak choy cultivated on coastal Entisols. This research was conducted from October to December 2023 in the Plant and Soil Research field  on the outskirts of the Bengkulu University campus. The treatments used were a combination of urea and SRF, consisting of 0% N-Urea, 100% N-Urea, 75% N-Urea + 25% N-SRF, 50% N-Urea + 50% N-SRF, 25% N-Urea + 75% N-SRF, and 100% N-SRF. The study was set up in a completely randomized design with five replications. The results demonstrated that the treatments enhanced the growth and biomass yield of pak choy, as well as NUE. The combination of 50% N-Urea + 50% N-SRF (equal to 200 kg urea ha-1 + 608.5 kg SRF ha-1) resulted in higher leaf area, fresh shoot weight, dry shoot weight, fresh plant weight, N- uptake, and NUE compared with the application of 100% N-Urea (400 kg urea ha-1). The NUE for the combination of 50% N-Urea + 50% N-SRF was 36.36%, which was 13.63% compared to 100% N-Urea with an NUE of 34.09%. Therefore, using this SRF allows for a reduction in urea requirements by up to 50%.NUE and nitrogen uptake show a very high positive association (r=0.941, p<0.01).


Keywords: inorganic nitrogen fertilizer, slow- release fertilizer, coastal sandy soil, activated zeolite matrix

Article Details

How to Cite
Resti , C., Marwanto, M., & Handajaningsih, M. (2024). Enhancing Nitrogen Use Efficiency, Growth, and Biomass Yield of Pak Choy on Coastal Entisols with a Combination of Reduced Nitrogen Fertilizer and Zeolite-Based Slow-Release Fertilizer. Akta Agrosia, 27(2), 52–63. https://doi.org/10.31186/aa.27.2.52-63

References

  1. Ashraf, M., and T. McNeilly. 2004. Salinity tolerance in brassica oilseeds. Crit. Rev. Plant Sci. 23(2):157–174. Doi:10.1080/07352680490433286.
  2. Balai Penelitian Tanah. 2009. Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Balai Besar Litbang Sumber Daya Lahan Pertanian Balai Pengembangan dan Penelitian Pertanian Departemen Pertanian, Bogor.
  3. Banik, C., S. Bakshi, D. A. Laird, R. G. Smith, and R. C. Brown. 2023. Impact of biochar‐based slow‐release N‐fertilizers on maize growth and nitrogen recovery efficiency. J. Environ. Qual. 52(3):630–640. Doi:10.1002/jeq2.20468.
  4. Barrett, C., E. Zottarelli, L. Paranhos, L.G. Dittmar, P. Fraisse, and J. VanSickle. 2018. Optimization of irrigation and N-fertilizer strategies for cabbage plasticulture system. Sci. Hortic. 234:323–334. Doi:10.1016/j.scienta.2018.02.063.
  5. BBSDLP. 2012. Basis Data Sumber Daya Lahan pada Skala Tinjau 250.000. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Bogor.
  6. Catli, N. B. J., V. P. Migo, C. G. Alfafara, M. C. Maguyondetras, and C. C. P. Brutas. 2020. Optimization of the production of a complete fertilizer formulation by batch impregnation using clinoptilolite zeolite as carrier. IOP Conf. Ser. Mater. Sci. Eng. 778(1). Doi:10.1088/1757-899X/778/1/012066.
  7. Chen, Y., J. Wang, and Y. Zhang. 2021. Optimizing nitrogen management with slow-release fertilizers for sustainable agriculture. J. Soil Sci. Plant Nutr. 21(4):1203–1215. Doi:10.1007/s42729-021-00321-1.
  8. Chen, Y., Z. Wang, and T. Liu. 2020. Impact of slow-release fertilizers on leaf area and photosynthetic activity in maize. Photosynthetica 58(3):642–650. Doi:10.32615/ps.2020.047.
  9. Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas, and H. Poorter. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51(4):335. Doi:10.1071/bt02124.
  10. Costa, C. R. G., V. Silva Fraga, G. R. Lambais, K. O. Soares, S. R. Prazeres Suddarth, and S. D. S. Medeiros. 2019. Chemical and physical quality of the entisol in a natural regeneration area in the semiarid region of Paraiba. J. Exp. Agric. Int. 35(2):1–7. Doi:10.9734/jeai/2019/v35i230202.
  11. de Campos Bernardi, A.C., J.C. Polidoro, M.B. de Melo Monte, E.I. Pereira, C.R. de Oliveira and K. Ramesh. 2016. Enhancing nutrient use efficiency using zeolites minerals -A review. Advances in Chemical Engineering and Science, 06(04), 295–204. Doi:10.4236/aces.2016.64030.
  12. de Holanda, S.F., L.K. Vargas, and C.E. Granada. 2023. Challenges for sustainable production in sandy soils: A review. Environ. Dev. Sustain. Doi:10.1007/s10668-023-03895-6.
  13. Gao, W., Z. Zhang, and W. Yu. 2022. Effects of zeolite amendments on soil structure and crop yield: A meta-analysis. Soil Tillage Res. 214:105–208. Doi:10.1016/j.still.2021.105208.
  14. Geng, J., Q. Ma, J. Chen, M. Zhang, C. Li, Y. Yang, X. Yang, W. Zhang, and Z. Liu. 2016. Effects of polymer-coated urea and sulfur fertilization on yield, nitrogen use efficiency and leaf senescence of cotton Field Crops Research, 187, 87–95. Doi:10.1016/j.fcr.2015.12.010.
  15. Guo, M., and X. Zhou. 2023. Environmental implication of zeolite application in agriculture: A review. Environmental Science and Technology, 57(4), 1901–1912. Doi:10.1021/acs.jafc.1c01234.
  16. Huang, L., S. Liu, and J. Zhang. 2022. Long-term effects of slow-release fertilizers on soil nitrogen dynamics and crop performance. Plant and Soil, 471(1–2), 153–168. Doi:10.1007/s11104-021-05234-x.
  17. Jiang, Y., X. Zhang, and W. Li. 2019. Effects of slow-release fertilizers on nitrogen efficiency and crop yield in sandy soils. Field Crops Research, 239, 72–81. Doi:10.1016/j.fcr.2019.05.014.
  18. Karolinoerita, V., and W. Annisa. 2020. Salinisasi lahan dan permasalahannya di Indonesia. Jurnal Sumberdaya Lahan, 14(2), 91. Doi:10.21082/jsdl.v14n2.2020.91-99.
  19. Lateef, A., R. Nazir, N. Jamil, S. Alam, R. Shah, M.N. Khan, and M. Saleem. 2016. Synthesis and characterization of zeolite-based nano-composite: An environment friendly slow-release fertilizer. Microporous and Mesoporous Materials, 232, 174–183. Doi:10.1016/j.micromeso.2016.06.020.
  20. Lawrencia, D., S.K. Wong, D.Y.S. Low, B.H. Goh, J.K. Goh, U.R. Ruktanonchai, A. Soottitantawat, L.H. Lee, and S.Y. Tang. 2021. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10(2), 1–26. Doi:10.3390/plants10020238.
  21. Li, G., G. Cheng, W. Lu, and D. Lu. 2021a. Differences of yield and nitrogen use efficiency under different applications of slow-release fertilizer in spring maize. Journal of Integrative Agriculture, 20(2), 554–564. Doi:10.1016/S2095-3119(20)63315-9
  22. Li, L., Y. J. Zhang, A. Novak, Y. Yang, and J. Wang. 2021b. Role of biochar in improving sandy soil water retention and resilience to drought. Water 13:407. Doi:10.3390/w13040407.
  23. Li, Z., X. Zhang, and Y. Chen. 2020. Performance of slow-release fertilizers in improving nitrogen use efficiency and reducing environmental impact. Agricultural Systems, 178, 102–775. Doi:10.1016/j.agsy.2019.102755.
  24. Liu, J., J. Feng, and X. Zhang. 2023. Enhancing leaf area and growth in saline soils using slow-release fertilizers. Agronomy Journal, 115(1), 215–22. https://doi.org/10.3390/su16052196.
  25. Maghsoodi, M. R., N. Najafi, A. Reyhanitabar, and S. Oustan. 2020. Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers. Geoderma, 379. Doi:10.1016/j.geoderma.2020.114644.
  26. Mahjoor, F., and S. Ehsan. 2019. Reduction of ammonia volatilization from urea fertilizer using zeolite and biochar amendments. Environmental Technology, 40(13), 1710–1719. Doi:10.1080/09593330.2018.1449608.
  27. Paerl, H. W., K.E. Havens, H. Xu, G. Zhu, M.J. McCarthy, S.E. Newell, J.T. Scott, N.S. Hall, T.G. Otten, and B. Qin. 2020. Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia, 847(21), 4359–4375. Doi:10.1007/s10750-019-04087-y.
  28. Pich, B., I.W. Warmada, H. Hendrayana, and T. Yoneda. 2010. Modified natural zeolite and bentonite as adsorbents of heavy metal ions from polluted groundwater in Yogyakarta urban area, Indonesia. Journal of Applied Geology, 2(1), 12–19. Doi:10.22146/jag.7229.
  29. Purnomo, C. W., and H. Saputra. 2021. Manufacturing of slow and controlled release fertilizer. Controlled Release Fertilizers for Sustainable Agriculture, 95–110. https://doi.org/10.1016/b978-0-12-819555-0.00006-6.
  30. Romadhan, T.D., Marwanto, B.G. Murcitro, and M. Handajaningsih. 2022. Amelioration of salinity-stressed soil using natural zeolite for improving soil properties and Chinese cabbage agronomic performances. J. Akta Agrosia, 25(1), 29–38. Doi:10.31186/aa.25.1.29-38.
  31. Schmidt, H. P., B.H. Pandit, G. Cornelissen, and C.I. Kammann. 2017. Biochar-based fertilization with liquid nutrient enrichment: 21 Field trials covering 13 crop species in Nepal. Land Degradation and Development, 28(8), 2324–2342. Doi:10.1002/ldr.2761.
  32. Shannon, M.C., and C.M. Grieve. 1998. Tolerance of vegetable crops to salinity. HortScience, 78(1–4), 5–38. Doi:10.21273/hortsci.48.12.1508.
  33. Soltys, L. M., I.F. Mironyuk, T.R. Tatarchuk, and V.I. Tsinurchyn. 2020. Zeolite-based composites as slow-release fertilizers (Review). Physics and Chemistry of Solid State, 21(1), 89–104. Doi:10.15330/pcss.21.1.89-104.
  34. Suman, J., A. Rakshit, A. Patra, and S. Das. 2023. Enhanced efficiency N fertilizers: An effective strategy to improve use efficiency and ecological sustainability. J. Soil Sci. Plant Nutr. 23:1472–1488. Doi:10.1007/s42729-023-01237-z.
  35. Vlek, P. L. G., and B. H. Byrnes. 1986. The efficacy and loss of fertilizer N in lowland rice. Nitrogen Economy of Flooded Rice Soils, 131–147. Doi:10.1007/978-94-009-4428-2_7.
  36. Wang, D., C. Li, S.J. Parikh, and K.M. Scow. 2019. Impact of biochar on water retention of two agricultural soils – A multi-scale analysis. Geoderma, 340, 185–191.
  37. Doi:10.1016/geoderma.2019.01.012.
  38. Wang, H., J. Li, and Q. Chen. 2020. Enhancing plant growth and yield with slow-release fertilizers in saline soils. Journal of Soil Science and Plant Nutrition, 20(1), 180–102. Doi:10.1007/s42729-020-00178-w.
  39. Weih, M., K. Hamnér, and F. Pourazari. 2018. Analyzing plant nutrient uptake and utilization efficiencies: Comparison between crops and approaches. Plant and Soil, 430, 7–21. Doi:10.1007/s11104-018-3738-y.
  40. Ye, H. M., H.F. Li, C.S. Wang, J. Yang, G. Huang, X. Meng, and Q. Zhou. 2020. Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: Performance and mechanism. Chemical Engineering Journal, 381(August 2019), 122-704. Doi:10.1016/j.cej.2019.122704.
  41. Yousaf, M., S. Bashir, H. Raza, A.N. Shah, J. Iqbal, M. Arif, M.A. Bukhari, S. Muhammad, S. Hashim, J. Alkahtani, M.S. Alwahibi, and C. Hu. 2021. Role of nitrogen and magnesium for growth, yield, and nutritional quality of radish. Saudi Journal of Biological Sciences, 28(5), 3021–3030. Doi:10.1016/j.sjbs.2021.02.043.