Main Article Content
Abstract
Meloidogyne spp. nematode is important pathogen of tomato plants that causes a characteristic symptom, namely root knot. One alternative to controlling Meloidogyne nematodes is by utilizing PGPB secondary metabolites. The objective of this research is to explore the potential of secondary metabolites produced by PGPB in inducing systemic resistance (ISR) and increasing peroxidase enzyme activity in tomato plants attacked by Meloidogyne spp. This study used a completely randomized design (CRD), consisting of 11 treatments, 3 replicates. The observation parameters included Induced Systemic Resistance (ISR) Potential Test and peroxidase activity (PO) analysis. The results showed that the secondary metabolites from the Bacillus mycoides (MRSNUMBE.2.2) treatment were the best treatment in the ISR observation, which was indicated by the lowest nematode penetration rate, which was 3.66 nematodes in plant root tissue. In the observation of peroxidase activity, secondary metabolites from Bacillus waihenstephanensis (RBTLL.3.2) showed the highest peroxidase enzyme activity, which was 0.0437 µg/ml on day 7 and 0.0500 µg/ml on day 14.
Keywords: induce systemic resistance, Meloidogyne spp., peroxsidase, secondary metabolites
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Afifah, E.N., R.H. Murti, and T.R. Nuringtyas. 2019. Metabolomics approach for the analysis of resistance of four tomato genotypes (Solanum lycopersicum L.) to root-knot nematodes (Meloidogyne incognita). Open Life Sciences 14(1): 141–149. https://doi.org/10.1515/biol-2019-0016.
- Efthimiadou, A., N. Katsenios, S. Chanioti, M. Giannoglou, N. Djordjevic, and G. Katsaros. 2020. Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific Reports 10(1): 1–11. https://doi.org/10.1038/s41598-020-78034-6.
- Greco, N., Minuto, A., d'ericco, F. P., & d'Ericco, G. I. A. D. A. (2024). Synthetic nematicides in italy: past and present role in the management of plant parasitic nematodes and future perspectives of control. Redia: Journal of Zoology/Giornale di Zoologia, 107.
- Habazar, T., Winarto, Y. Obel, Y. Yanti, M.R. Dani, and D. Monica. 2021. Biocontrol of Meloidogyne sp. on tomato plants by selected Bacillus spp. IOP Conference Series: Earth and Environmental Science 757(1). https://doi.org/10.1088/1755-1315/757/1/012019.
- Hafsah, S. 2022. Biokontrol rizobakteri indigenous terhadap Synchytrium pogostemonis penyebab penyakit budok pada nilam Aceh (Pogostemon cablin Benth.). Kultivasi 21(1). https://doi.org/10.24198/kultivasi.v21i1.36316.
- Hasky-Günther, K., S. Hoffmann-Hergarten, and R.A. Sikora. 1998. Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundamental and Applied Nematology 21(5): 511–517.
- Ismawanti, A., E. Nurcahyani, and S. Farizi. 2022. Effect of indole acetic acid (IAA) by Serratia marcescens strain MBC1 on soybean (Glycine max L.) germination. Indonesian Journal of Biotechnology and Biodiversity 6(1).
- Kaleh, A.M., P. Singh, K. Ooi Chua, and J.A. Harikrishna. 2024. Modulation of plant transcription factors and priming of stress tolerance by plant growth-promoting bacteria: A systematic review. Annals of Botany: 1–15. https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcae166/7758362.
- Khotimah, N., N. Wijaya, and M. Sritamin. 2020. Perkembangan populasi nematoda puru akar (Meloidogyne spp.) dan tingkat kerusakan pada beberapa tanaman familia Solanaceae. Jurnal Agroekoteknologi Tropika 9(1). https://ojs.unud.ac.id/index.php/JAT.
- Mahapatra, S., Chakraborty, S., Samanta, M., Das, S., & Islam, T. (2022). Current understanding and future directions of biocontrol of plant diseases by Bacillus spp., with special reference to induced systemic resistance. In Bacilli in Agrobio-technology: plant stress tolerance, bioreme-diation, and bioprospecting (pp. 127-150). Cham: Springer International Publishing.
- Molinari, S., & Leonetti, P. (2023). Inhibition of ROS-scavenging enzyme system is a key event in tomato genetic resistance against root-knot nematodes. International journal of molecular sciences, 24(8), 7324.
- Nadarajah, K. K. (2024). Defensive strategies of ROS in plant–pathogen interactions. In Plant Pathogen Interaction (pp. 163-183). Singapore: Springer Nature Singapore.
- Pratiwi, N.W.K., R. Amrulloh, F. El Auly, and F. Kurniawati. 2020. Deteksi dan identifikasi nematoda puru akar (Meloidogyne spp.) pada tanaman bit menggunakan metode DNA barcoding. Jurnal Fitopatologi Indonesia 16(1): 1–8. https://doi.org/10.14692/jfi.16.1.1-8.
- Ramírez-López, M., Bautista-Cruz, A., Toledo-López, A., & Aquino-Bolaños, T. (2025). Rhizospheric and endophytic plant growth-promoting bacteria associated with Coffea arabica L. and Coffea canephora Pierre ex Froehner: A review of their agronomic potential. Microorganisms, 13(11), 2567.
- Saiyam, D., Dubey, A., Malla, M. A., & Kumar, A. (2024). Lipopeptides from Bacillus: Unveiling biotechnological prospects—Sources, properties, and diverse applications. Brazilian Journal of Microbiology, 55(1), 281-295.
- Schellenberger, R., M. Touchard, C. Clément, F. Baillieul, S. Cordelier, J. Crouzet, and S. Dorey. 2019. Apoplastic invasion patterns triggering plant immunity: Plasma membrane sensing at the frontline. Molecular Plant Pathology 20(11): 1602–1616. https://doi.org/10.1111/mpp.12857.
- Tariq‐Khan, M., Rehman, T. U., Mukhtar, T., Mahmood, B., & Ahmed, R. (2025). Population dynamics and virulence patterns of root‐knot nematodes (Meloidogyne spp.) on tomato in Poonch Highlands, Azad Jammu and Kashmir, Pakistan. Journal of Phytopathology, 173(2), e70060.
- Yang, J.W., S.U. Park, H.U. Lee, K.J. Nam, K.L. Lee, J.J. Lee, J.H. Kim, S.S. Kwak, H.S. Kim, and Y.H. Kim. 2023. Differential responses of antioxidant enzymes and lignin metabolism in susceptible and resistant sweetpotato cultivars during root-knot nematode infection. Antioxidants 12(6). https://doi.org/10.3390/antiox12061164.
- Yanti, Y., H. Hamid, N. Nurbailis, and N.L. Suriani. 2022. Biological activity of indigenous selected plant growth promoting rhizobacteria isolates and their ability to improve the growth traits of shallot (Allium ascalonicum L.). Philippine Journal of Science 151(6): 2327–2340. https://doi.org/10.56899/151.6B.03.
- Zondo, S. N., & Mafa, M. S. (2025). Peroxidase and β-1, 3-glucanase synergistic functions strengthen plant cell wall and protect wheat against Diuraphis noxia infestation. Planta, 262(2),
References
Afifah, E.N., R.H. Murti, and T.R. Nuringtyas. 2019. Metabolomics approach for the analysis of resistance of four tomato genotypes (Solanum lycopersicum L.) to root-knot nematodes (Meloidogyne incognita). Open Life Sciences 14(1): 141–149. https://doi.org/10.1515/biol-2019-0016.
Efthimiadou, A., N. Katsenios, S. Chanioti, M. Giannoglou, N. Djordjevic, and G. Katsaros. 2020. Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific Reports 10(1): 1–11. https://doi.org/10.1038/s41598-020-78034-6.
Greco, N., Minuto, A., d'ericco, F. P., & d'Ericco, G. I. A. D. A. (2024). Synthetic nematicides in italy: past and present role in the management of plant parasitic nematodes and future perspectives of control. Redia: Journal of Zoology/Giornale di Zoologia, 107.
Habazar, T., Winarto, Y. Obel, Y. Yanti, M.R. Dani, and D. Monica. 2021. Biocontrol of Meloidogyne sp. on tomato plants by selected Bacillus spp. IOP Conference Series: Earth and Environmental Science 757(1). https://doi.org/10.1088/1755-1315/757/1/012019.
Hafsah, S. 2022. Biokontrol rizobakteri indigenous terhadap Synchytrium pogostemonis penyebab penyakit budok pada nilam Aceh (Pogostemon cablin Benth.). Kultivasi 21(1). https://doi.org/10.24198/kultivasi.v21i1.36316.
Hasky-Günther, K., S. Hoffmann-Hergarten, and R.A. Sikora. 1998. Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundamental and Applied Nematology 21(5): 511–517.
Ismawanti, A., E. Nurcahyani, and S. Farizi. 2022. Effect of indole acetic acid (IAA) by Serratia marcescens strain MBC1 on soybean (Glycine max L.) germination. Indonesian Journal of Biotechnology and Biodiversity 6(1).
Kaleh, A.M., P. Singh, K. Ooi Chua, and J.A. Harikrishna. 2024. Modulation of plant transcription factors and priming of stress tolerance by plant growth-promoting bacteria: A systematic review. Annals of Botany: 1–15. https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcae166/7758362.
Khotimah, N., N. Wijaya, and M. Sritamin. 2020. Perkembangan populasi nematoda puru akar (Meloidogyne spp.) dan tingkat kerusakan pada beberapa tanaman familia Solanaceae. Jurnal Agroekoteknologi Tropika 9(1). https://ojs.unud.ac.id/index.php/JAT.
Mahapatra, S., Chakraborty, S., Samanta, M., Das, S., & Islam, T. (2022). Current understanding and future directions of biocontrol of plant diseases by Bacillus spp., with special reference to induced systemic resistance. In Bacilli in Agrobio-technology: plant stress tolerance, bioreme-diation, and bioprospecting (pp. 127-150). Cham: Springer International Publishing.
Molinari, S., & Leonetti, P. (2023). Inhibition of ROS-scavenging enzyme system is a key event in tomato genetic resistance against root-knot nematodes. International journal of molecular sciences, 24(8), 7324.
Nadarajah, K. K. (2024). Defensive strategies of ROS in plant–pathogen interactions. In Plant Pathogen Interaction (pp. 163-183). Singapore: Springer Nature Singapore.
Pratiwi, N.W.K., R. Amrulloh, F. El Auly, and F. Kurniawati. 2020. Deteksi dan identifikasi nematoda puru akar (Meloidogyne spp.) pada tanaman bit menggunakan metode DNA barcoding. Jurnal Fitopatologi Indonesia 16(1): 1–8. https://doi.org/10.14692/jfi.16.1.1-8.
Ramírez-López, M., Bautista-Cruz, A., Toledo-López, A., & Aquino-Bolaños, T. (2025). Rhizospheric and endophytic plant growth-promoting bacteria associated with Coffea arabica L. and Coffea canephora Pierre ex Froehner: A review of their agronomic potential. Microorganisms, 13(11), 2567.
Saiyam, D., Dubey, A., Malla, M. A., & Kumar, A. (2024). Lipopeptides from Bacillus: Unveiling biotechnological prospects—Sources, properties, and diverse applications. Brazilian Journal of Microbiology, 55(1), 281-295.
Schellenberger, R., M. Touchard, C. Clément, F. Baillieul, S. Cordelier, J. Crouzet, and S. Dorey. 2019. Apoplastic invasion patterns triggering plant immunity: Plasma membrane sensing at the frontline. Molecular Plant Pathology 20(11): 1602–1616. https://doi.org/10.1111/mpp.12857.
Tariq‐Khan, M., Rehman, T. U., Mukhtar, T., Mahmood, B., & Ahmed, R. (2025). Population dynamics and virulence patterns of root‐knot nematodes (Meloidogyne spp.) on tomato in Poonch Highlands, Azad Jammu and Kashmir, Pakistan. Journal of Phytopathology, 173(2), e70060.
Yang, J.W., S.U. Park, H.U. Lee, K.J. Nam, K.L. Lee, J.J. Lee, J.H. Kim, S.S. Kwak, H.S. Kim, and Y.H. Kim. 2023. Differential responses of antioxidant enzymes and lignin metabolism in susceptible and resistant sweetpotato cultivars during root-knot nematode infection. Antioxidants 12(6). https://doi.org/10.3390/antiox12061164.
Yanti, Y., H. Hamid, N. Nurbailis, and N.L. Suriani. 2022. Biological activity of indigenous selected plant growth promoting rhizobacteria isolates and their ability to improve the growth traits of shallot (Allium ascalonicum L.). Philippine Journal of Science 151(6): 2327–2340. https://doi.org/10.56899/151.6B.03.
Zondo, S. N., & Mafa, M. S. (2025). Peroxidase and β-1, 3-glucanase synergistic functions strengthen plant cell wall and protect wheat against Diuraphis noxia infestation. Planta, 262(2),