Main Article Content

Abstract

biodegradable polymer such as PVA is considered the most promising candidates for developing the sustainable sticker. The objective of this study was to determine the most suitable PVA + TS blends as adhesives agent for AMF spores inoculation via seed coating which can enhance the spores viability and their beneficial properties in maize. The polythene bag experiment was performed in a screen house of the Department of Plant Protection Faculty of Agriculture, University of Bengkulu Indonesia in 2015. Six adhesive blends were employed: 100% PVA + 0% TS, 75% PVA + 25% TS, 50% PVA + 50% TS, 25% PVA + 75% TS, 0% PVA + 100% TS, and no coating. The six experimental treatments were laid out in a completely randomized design with three replications. The results show that root colonization, AMF spore population, and shoot dry weight in 75% PVA + 25% TS were equal to those in 100% PVA. Root colonization, AMF spore population, shoot P content, and shoot P concentration were greater for 50% PVA + 50% TS than 100% PVA, 100% TS, and no coating. A mixture of 50% PVA + 50% TS was considered the preferred sticker. Thus, the tapioca starch can be used to substitute 25 - 50% of the PVA used without reducing AMF inoculant adhering to seed.

Keywords: polymeric seed coating, seed coating formulation, arbuscular mycorrhizal fungi, sustainable coating adhesive, seed inoculation, seed inoculant

Article Details

How to Cite
Marwanto, M., Bustaman, H., Handajaningsih, M., Supanjani, S., Murcitro, B. G., & Salamah, U. (2020). Delivery of Arbuscular Mycorrhiza Fungus Spores via Seed Coating with Biodegradable Binders for Enhancement of the Spores Viability and Their Beneficial Properties in Maize. Akta Agrosia, 23(1), 1–10. https://doi.org/10.31186/aa.23.1.1-10

References

  1. REFERENCES
  2. Abdullah, S.Y. and F.H. Musa. 2005. Perbanyakan cendawan mikoriza arbuskula (CMA) pada berbagai varietas jagung (Zea mays L.) dan pemanfaatannya pada dua varietas tebu (Saccharum officinarum L.). J. Sains & Teknologi. 5 (1): 12 – 20.
  3. Accinelli, C., H.K. Abbas, N.S. Little, J.K. Kotowicz, and W.T. Shier. 2018a. Biological control of aflatoxin production in corn using non-aflatoxigenic Aspergillus flavus administered as a bioplastic-based seed coating. Crop Prot. 107: 87–92. doi: 10.1016/j.cropro.2018.02.004.
  4. Accinelli, C., H.K. Abbas, and W.T. Shier. 2018b. A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. J. Crop Improv. 32: 318–330. doi: 10.1080/15427528.2018.1425792.
  5. Amirkhani, M., M. Mortaz, A. Netravali, and A.G. Taylor. 2014. Seed Coating Technologies Employing a Plant-based Green Binder. doi: 10.13140/2.1.2744.0000.
  6. AOSA. 2014. Rules for testing seeds: Principles and procedures. Assn. Off. Seed Anal. 1: 6–25.
  7. Berruti, A., E. Lumini, R. Balestrini, and V. Bianciotto. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let's benefit from ast successes. Front Microbiol. 6:1559. doi:10.3389/fmicb.2015.01559
  8. Brundrett, M., N. Bougher, B. Dell, T. Grove and N. Malajczuk. 1996. Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32. 374 p.
  9. Cassman, K.G., A. Dobermann, D. T. Walters, and H.Yang. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28:315–58 doi: 10.1146/annurev.energy.28.040202.122858
  10. Colla, G., Y. Rouphael, P. Bonini, and M. Cardarelli. 2015. Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int. J. Plant Prod. 9:171-190. doi:10.22069/ijpp.2015.2042
  11. Daniels, B.A. and H.A. Skipper. 1982. Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck, N.C.(ed) Methods and Principles of Mycorrhizal Research, American Phytopathological Society, St. Paul, 29-35.
  12. Ehsanfar, S. and S.A. Modarres-Sanavy. 2004. Crop protection by seed coating. Commun. Agric. Appl. Biol. Sci. 70:225–229.
  13. Fedderman, N., R. Finlay, T. Boller, and M. Elfstrand. 2010. Functional diversity in arbuscular mycorrhiza - The role of gene expression, phosphorus nutrition and symbiotic efficiency. Fungal Ecology 3:1-8. doi: 10.1016/j.funeco.2009.07.003
  14. Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist. 84: 489-500. doi:10.1111/j.1469-8137.1980.tb04556.x
  15. Gomez, K.A. and A. A. Gomez. 1984. Statistical Procedures for Agricultural Research. 2nd Edition, New York: John Wiley and Sons Inc.
  16. Han, X., S. Shen, and X. Hu. 2009. Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination. 240:21-26.
  17. Hole?ková, Z., M. Kulhánek, and J. Balík. 2017. Use of active microrganisms in crop production–A review. J. Food Process. Technol. 8:10. doi: 10.4172/2157-7110.1000696
  18. Kartika, R. 2004. Pengaruh Inokulasi Cendawan Mikoriza Arbuskula dan Dosis Pupuk P terhadap Serapan Hara P, Pertumbuhan dan Hasil Serat Rami (Boehmeria nivea L. Gaud). Skripsi. Departemen Agronomi dan Hortikultura. Fakultas Pertanian IPB. Bogor
  19. Khodijah, S. 2009. Evaluasi Efektivitas Bahan Perekat dan Pelapis untuk Pelapisan Benih Kedelai (Glycine max Merr.) dengan Cendawan Mikoriza Arbuskula. Skripsi. Departemen Agronomi dan Hortikultura. Fakultas Pertanian IPB. Bogor.
  20. Lu, D.R., C. M. Xiao, and S. J. Xu. 2009. Starch-based completely biodegradable polymer materials. Polymer Letters. 3 (6): 366–375. doi: 10.3144/expresspolymlett.2009.46
  21. Majeed, K.J. and M.I. Kamil. 2013. Effect of formaldehyde Content and nanoparticles on biodegradability of PVA/Corn Starch blend films. IJAIEM. 10 (10):78-85.
  22. Musfal. 2010. Potensi Cendawan Mikoriza Arbuskula untuk Meningkatkan Hasil Tanaman Jagung. Balai Penelitian Teknologi Pertanian Sumatera Utara. Jurnal Litbang Pertanian, 29(4):154-158.
  23. Njeru E, L. Avio, G. Bocci, C. Sbrana, A. Turrini, P. Bàrberi, and F. Oehl. 2015. Contrasting effects of cover crops on “hot spot” arbuscular mycorrhizal fungal communities in organic tomato. Biol. Fertil. Soils. 51:151–166. doi: 10.1007/s00374-014-0958-z.
  24. O’Callaghan, M. 2016. Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl. Microbiol. Biotechnol. 100, 5729–5746. doi: 10.1007/s00253-016-7590-9
  25. Oliveira, R. S., I. Rocha, Y. Ma, M. Vosátka, and H. Freitas. 2016a. Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.). J.Toxicol. Environ. Health A. 79: 329–337. doi: 10.1080/15287394.2016.1153448.
  26. Oliveira, R. S., Y. Ma, I. Rocha, M.F. Carvalho, M. Vosátka, and H. Freitas. 2016b. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L. J. Toxicol. Environ. Health. A 79: 320–328. doi: 10.1080/15287394.2016.1153447
  27. Oliveira, R.S., P. Carvalho, G. Marques, L. Ferreira, M. Nunes, I. Rocha, Y. Ma, M.F. Carvalho, M. Vosátka, and H. Freitas. 2017b. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. J. Sci. Food Agric. 97:4379-4385. doi:10.1002/jsfa.8201
  28. Olsen, S.R. and L.E. Sommers. 1982. Phosphorus. In: Page AL (ed) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. Am. Soc. Agro., Madison, WI, pp. 403–430
  29. Pedrini, S., D.J. Merritt, J. Stevens, and K. Dixon. 2017. Seed coating: science or marketing spin? Trends Plant Sci. 22:106–116. doi: 10.1016/j. tplants.2016.11.002
  30. Rocha, I., M. Ying, M. F. Carvalho, C. Magalhães, M. Janoušková, M.Vosátka, H. Freitas, and R. S. Oliveira. 2019a. Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilization regimes. Arch. Agron. Soil Sci. 65: 31–43. doi: 10.1080/03650340.2018.1479061
  31. Rocha, I., Y. Ma, M. Vosátka, H. Freitas, and R.S. Oliveira. 2019b. Growth and nutrition of cowpea (Vigna unguiculata) under water deficit as influenced by microbial inoculation via seed coating. J. Agron. Crop Sci. 205: 447–459. doi: 10.1111/jac.12335
  32. Rouphael Y., G. Colla, G. Graziani, A. Ritieni, M. Cardarelli, S. De Pascale. 2017. Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Chem. 234: 10–19. doi: 10.1016/j.foodchem. 2017, 04.175
  33. Sari, P. E. 2009. Pengaruh Kombinasi Bahan Pelapis dan Methylobacterium spp. terhadap Daya Simpan Benih dan Vigor Bibit Kacang Panjang (Vigna sinensis L.). Skripsi. Departemen Agronomi dan Hortikultura. Fakultas Pertanian IPB. Bogor.
  34. Schröder, J.J., A.L. Smit, D. Cordell, and A. Rosemarin. 2011. Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere 84: 822-831. doi:10.1016/j.chemosphere.2011.01.065
  35. Smith, S.E. and D.J. Read. 2008. Mycorrhizal Symbiosis, 3rd edn. Academic, London.
  36. Song, R., M. Murphy, C. Li, K. Ting, C. Soo, and Z. Zheng. 2018. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel. Ther. 12:3117–3145. doi:10.2147/DDDT.S165440.
  37. Taylor, A. G., C.J. Eckenrode, and R.W. Straub. 2001. Seed coating technologies and treatments for onion: Challenges and progress. HortScience 36: 199–205. doi: 10.21273/HORTSCI.36.2.199
  38. Thonar, C., J.D.S.nLekfeldt, V. Cozzolino, M. Kulhánek, C. Mosimann, G. Neumann, A. Piccolo, M. Rex, S. Symanczik, F. Walder, M. Weinmann, A. de Neergaard, and P. Mäder. 2017. Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chem. Biol. Technol. Agric. 4: 7. doi: 10.1186/s40538-017-0088-6
  39. Valentine, A.J., B.A. Osborne, and D.T. Mitchell. 2001. Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Sci. Horti. 88: 177-189.
  40. Vosátka, M., A. Látr, S. Gianinazzi, and J. Albrechtová. 2012. Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58: 29–37. doi: 10.1007/s13199-012-0208-9.