Main Article Content

Abstract

ABSTRACT

Proper concentration of soybean flour in the liquid formulation for Trichoderma harzianum T10 growth, its influence to suppress damping-off, and on the growth of cucumber seedlings was investigated. Randomized completely design was used in in vitro test with five treatments and five replicates. The treatments were T. harzianum T10 in Potato Dextrose Broth (control), T. harzianum T10 in soybean fluor of 1, 2, 3 and 4%. Randomiszed block design was used in in planta test with six treatments and five replicates. The treatments consisted of control, T. harzianum T10 in Potato Dextrose Broth, T. harzianum T10 in soybean fluor of 1, 2, 3, and 4%. Variables observed were conidia density, incubation period, disease incidence, area under the disease progress curve, maximum potentially growth, germination persentage, crop height, root fresh weight, shoot fresh weight, and root length. Result of the research showed that the right liquid formulation for T. harzianum T10 growth was the use of soybean fluor with concentration of 2% resulting conidia density as 67,10% compared to PDB. The formulation could suppress the disease incidence, decrease AUDPC value, increase root wet weight, crown wet weight, and root length as 66.67, 66.10, 57.36, 43.81, and 41.81%, respectively, compared to control.

 

Keyword: cucumber, damping-off, liquid formula, soybean flour, Trichoderma harzianum

Article Details

How to Cite
Soesanto, L. (2020). Application of Trichoderma harzianum T10 Liquid Formula Based On Soybean Flour Against Cucumber Seedlings Damping-Off (Pythium sp.). Akta Agrosia, 23(1), 11–18. https://doi.org/10.31186/aa.23.1.11-18

References

  1. REFERENCES
  2. Akagi, A., C. Jiang, and H. Takatsuji. 2015. Magnaporthe oryzae inoculation of rice seedlings by spraying with a spore suspension. Bio-protocol 5(11): e1486. doi: 10.21769/BioProtoc.1486.
  3. Aktar, W., D. Sengupta, and A. Chowdhury. 2009. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology 2(1): 1–12. doi:10.2478/v10102-009-0001-7.
  4. Al-Hazmi, A.S. and M. TariqJaveed, 2016. Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi Journal of Biological Sciences 23(2): 288-292. doi: 10.1016/j.sjbs.2015.04.007.
  5. Alves, K.F., D. Laranjeira, M.P.S. Câmara, C.A.G. Câmara, snd S.J. Michereff. 2015. Efficacy of plant extracts for anthracnose control in bell pepper fruits under controlled conditions. Horticultura Brasileira 33(3). doi: 10.1590/S0102-053620150000300009.
  6. Andrie, K.L., M. Napitupulu, dan N. Jannah. 2015. Respon tanaman mentimun (Cucumis sativus L.) terhadap jenis POC dan konsentrasi yang berbeda. J. Agrifor 14(1): 15-26.
  7. Azarmi, R., B. Hajieghrari, and A. Giglou. 2011. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology 10(31): 5850-5855. doi: 10.5897/AJB10.1600.
  8. Badan Pusat Statistik. 2017. Produksi Mentimun di Indonesia, 2013-2016. Badan Pusat Statistik dan Direktorat Jenderal Hortikultura. (On-line) https://www.bps.go.id/subject/55/hortikultura.html#subjekViewTab5 diakses pada tanggal 30 Januari 2018.
  9. Benítez, T., A.M. Rincón, M.C. Limón, and A.C. Codón. 2005. Biocontrol mechanism of Trichoderma strains. International Microbiology 7(4): 249-60.
  10. Egamberdieva, D., S.J. Wirth, A.A. Alqarawi, E.F. Abd_Allah, and A. Hashem. 2017. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front Microbiol. 8: 2104. doi: 10.3389/fmicb.2017.02104.
  11. Finch-Savage, W.E. and G.W. Bassel. 2016. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany 67(3): 567–591. doi:10.1093/jxb/erv490.
  12. Gaši?, S. and B. Tanovi?. 2013. Biopesticide formulations, possibility of application and future trends. Pestic. Phytomed. (Belgrade), 28(2): 97–102. doi: 10.2298/PIF1302097G.
  13. Gozalli, M. 2015. Karakteristik Tepung Kedelai dari Jenis Impor dan Lokal (Varietas Anjasmoro dan Baluran) dengan Perlakuan Perebusan dan Tanpa Perebusan. Skripsi. Fakultas Teknologi Pertanian. Universitas Jember. (On-line) http://repository.unej.ac.id/bitstream/handle/123456789/73466/111710101014-1-42.pdf?sequence=1 diakses pada tanggal 18 September 2017.
  14. Gusnawaty, H.S., M. Taufik, L.O.S. Bande, dan A. Asis. 2017. Efektifitas beberapa medium untuk perbanyakan agens hayati Trichoderma sp. J. HPT Tropika 17(1): 70-76.
  15. Hanudin, A.A. Nawangsih, B. Marwoto, and B. Tjahyono. 2013. Komposisi formula biobakterisida berbahan aktif rizobacteri untuk pengendalian penyakit busuk lunak pada anggrek Phalaenopsis. Jurnal Hortikultura 23 (3): 224-254.
  16. Heydari, A. and M. Pessarakli. 2010. A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences 10(4): 273-290. doi: 10.3923/jbs.2010.273.290.
  17. Inácio, C.A., A.L.P.S. Rezende, L.S. Kowata-Dresch, and J. Pedro Pimentel. 2017. Techniques for inoculation of Sclerotium rolfsii on Neomarica longifolia and Evolvulus pusillus in Brazil. EC Microbiology 9(3): 104-110.
  18. Jaroszuk-?cise?, J., R. Ty?kiewicz, A. Nowak, E. Ozimek, M. Majewska, A. Hanaka, K. Ty?kiewicz, A. Pawlik, and G. Janusz. 2019. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int J Mol Sci. 20(19): 4923. doi: 10.3390/ijms20194923.
  19. Jeger, M.J. and S.L.H. Viljanen-Rollinson. 2001. The use of the area under disease-progress curve (audpc) to asses quantitive disease resistance in crop cultivars. Theoretical Applied Genetics 102 (1): 32 – 40. doi: 10.1007/s001220051615.
  20. Koike, S.T., M. Gaskell, C. Fouche, R. Smith, and J. Mitchell. 2000. Plant disease management for organic crops. ANR Publication 7252, University of California, Davis, CA.
  21. Köhl, J., R. Kolnaar, and W.J. Ravensberg. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci., 19 July 2019 | https://doi.org/10.3389/fpls.2019.00845.
  22. Kredics, L., L. Manczinger, Z. Antal, Z.Pe ?nzes, A. Szekeres, F. Kevei, and E. Nagy. 2005. In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. Journal of Applied Microbiology 96: 491–498. doi: 10.1111/j.1365-2672.2004.02167.x.
  23. Kumar, G., A. Maharshi, J. Patel, A. Mukherjee, H.B. Singh, and B.K. Sarma. 2017. Trichoderma: A potential fungal antagonist to control plant diseases. SATSA Mukhapatra Annual Technical Issue 21: 206-218.
  24. Leclerc, M., T. Doré, C.A. Gilligan, P. Lucas, and J.A.N. Filipe. 2014. Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases. PLoS One 9(1): e86568. doi: 10.1371/journal.pone.0086568.
  25. Mortimore, M. 2015. Dry land developers success stories from WestAfrica environment. J Biol Sci 45: 10-12.
  26. Napitupulu, D.S., T. Karo-Karo, dan Z. Lubis. 2013. Pembuatan kue bolu dari tepung pisang sebagai substitusi tepung terigu dengan pengayaan tepung kedelai. J. Rekayasa Pangan dan Pertanian 1(4): 14-19.
  27. Noordzij, M., F.W. Dekker, C. Zoccali, and K.J. Jager. 2010. Measures of disease frequency: Prevalence and incidence. Nephron - Clinical Practice, 115(1), 17–20. https://doi.org/10.1159/000286345.
  28. Nurhidayati, S., A. Majid, dan P.A. Mihardjo. 2015. Pemanfaatan biofungisida cair berbahan aktif Trichoderma sp. untuk mengendalikan penyakit antraknosa (Colletotrichum sp.) pada cabai di lapang. J. Berkala Ilmiah Pertanian 1(1): 1-5.
  29. Nzungize, J.R., F. Lyumugabe, J.P. Busogoro, and J.P. Baudoin. 2012. Pythium root rot of common bean: biology and control methods. Biotechnol. Agron. Soc. Environ 16(3): 405-413.
  30. Roslee, N.R., F. Doni, K. Auma, Abzar, and W.M.W. Yusoff. 2017. Effect of Trichoderma spp. on mustard growth (Brassica juncea L.). Undergraduate Research Journal for Biomolecular Sciences and Biotechnology 1: 168-176.
  31. Said, S.D. 2010. Model pertumbuhan biokontrol Trichoderma harzianum dalam medium cair. Hasil Penelitian Industri 23(1): 28-37.
  32. Shafique, H.A., S. Viqar, S. Ehteshamul-Haque, and M. Athar. 2016. Management of soil-borne diseases of organic vegetables. Journal of Plant Protection Research 56(3): 221-230. doi: 10.1515/jppr-2016-0043.
  33. Shwab, E. And N. Keller. 2008. Regulation of secondary metabolite production in filamentous ascomycetes. Mycological Research 112: 225–30. doi: 10.1016/j.mycres.2007.08.021.
  34. Soesanto, L., B. Prakoso, E. Mugiastuti, dan R.F. Rahayuniati. 2015. Uji empat substrat cair organik terhadap pertumbuhan empat isolat Trichoderma sp. Kongres ke-23 dan Seminar Ilmiah Perhimpunan Fitopatologi Indonesia (PFI), Balai Uji Terap Teknik dan Metode Karantina Pertanian, Bekasi, 11-13 November 2015.
  35. Soesanto, L., A. Hiban, and W.S. Suharti. 2019a. Application of Bio P60 and Bio T10 alone or in combination against stem rot of pakcoy. Journal of Tropical Horticulture 2(2): 38-44. doi: 10.33089/jthort.v2i2.20.
  36. Soesanto, L., E. Mugiastuti, and A. Manan. 2019b. Raw secondary metabolites of two Trichoderma harzianum isolates towards vacular streak dieback on cocoa seedlings. Pelita Perkebunan 35(1), 22-32.
  37. Sutton, J.C., C.R. Sopher, T.N. Owen-Going, W. Liu, B. Grodzinski, J.C. Hall, and R.L. Benchimol. 2006. Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathologica, 32(4), 307–321. https://doi.org/10.1590/s0100-54052006000400001
  38. Uruilal, C., A.M. Kalay, E. Kaya, dan A. Siregar. 2012. Pemanfaatan kompos ela sagu, sekam dan dedak sebagai medium perbanyakan agens hayati Trichoderma harzianum Rifai. J. Agrologia 1(1): 21-30.
  39. Vinale, F., K. Sivasithamparam, E.L. Ghisalberti, S.L. Woo, M. Nigro, R. Marra, N. Lombardi, A. Pascale, M. Ruocco, S. Lanzuise, G. Manganiello, and M. Lorito. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8(Suppl-1, M5): 127-139.
  40. Weller, D.M., J.M. Raaijimakers, B.B.M. Gardener, and L.S. Thomashow. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40: 309–348
  41. Zaidi, A.A., E.A. Elhag, S.H., Al-Otaibi and M.B. Baig. 2011. Negative effects on the environment and the farmers awareness in Saudi Arabia. The Journal of Animal and Plants Sciences 21(3): 605-611.
  42. Zehra, A., M.K. Dubey, M. Meena, and R.S. Upadhyay. 2017. Effect of different environmental conditions on growth and sporulation of some Trichoderma species. Journal of Environmental Biology 38: 197-203.