Main Article Content

Abstract

Pada penelitian ini telah dilakukan penentuan konstanta dielektrik material kain rajut pakan menggunakan metode kapasitansi perangkat kapasitor plat sejajar. Kain rajut pakan telah dibuat dengan menggunakan mesin rajut datar Stoll tipe CMS 530HP.  Enam sampel kain rajut poliester dan katun telah dibuat pada mesin rajut terkomputerisasi dengan kerapatan yang berbeda-beda. Terdapat tiga jenis kerapatan kain rajut yang telah dibuat pada penelitian ini. Pengukuran kapasitansi terdiri dari perangkat mikrokontroler Arduino Uno dan susunan seri resistor-kapasitor (RC). Hasil penelitian menunjukan bahwa kain rajut katun NP10 memiliki konstanta dielektrik yang lebih besar dibandingkan dengan kain poliester pada struktur kain yang sama. Hasil menunjukan korelasi yang cukup baik antara hasil prediksi dan eksperimen pada pengukuran kapasitansi. Terdapat enam bahan dielektrik yang ditentukan dengan hasil dari yang terbesar sampai yang terkecil berturut-turut yaitu kain rajut katun NP 10 (22,8874 + 4,6388), kain rajut katun NP 11 (21,4717 + 3,8064), kain rajut katun NP 12 (17,8721 + 2,3233), kain rajut poliester NP 10 (9,7751 + 2,4922), kain rajut poliester NP 11 (8,8282 + 0,9360) dan kain rajut poliester NP 12 (8,4358 + 1,1849). Telah ditemukan hubungan antara parameter kerapatan kain kain rajut pakan terhadap nilai konstanta dielektrik terukur.

 

Kata  kunci—kain rajut pakan, poliester, katun, kerapatan kain, konstanta dielektrik, kapasitor plat-sejajar.

 

ABSTRACT

 

This paper describes the dielectric measurement of weft knitted fabric using parallel-plate capacitance method. The weft knitted fabric were fabricated using weft knit machine Stoll CMS 530HP. Six different samples of polyester and cotton knitted fabric were fabricated by computerized flat knitting machine. There are consist of three types of density which made on this study. The capacitance measurement were consist of Arduino Uno microcontroller and a series of resistor-capacitor (RC). The result of this research indicates that NP10 cotton knitted fabric has higher dielectric constant than the polyester knitted fabric, with similar structure respectively. There are six fabric dielectric materials that are determined with the results from the largest to the smallest in a row namely NP 10 cotton knitted fabric (22,8874 + 4,6388), NP 11 cotton knitted fabric (21,4717 + 3,8064), NP 12 cotton knitted fabric (17,8721 + 2,3233), NP 10 polyester knitted fabric (9,7751 + 2,4922), NP 11 polyester knitted fabric (8,8282 + 0,9360) and NP 12 polyester knitted fabric (8,4358 + 1,1849). It has been found the correlation between the fabric density and the permittivity of the weft knitted fabric.

 

Keywords—weft knitted fabric, polyester, cotton, fabric density, dielectric constant, parallel-plate capacitor.

Article Details

How to Cite
Munandar, T., Putra, V. G. V., & Wardiningsih, W. (2020). STUDI PENGUKURAN KONSTANTA DIELEKTRIK KAIN RAJUT PAKAN POLIESTER DAN KATUN MENGGUNAKAN METODE KAPASITANSI PERANGKAT KAPASITOR PLAT SEJAJAR. Jurnal Kumparan Fisika, 3(3), 223–231. https://doi.org/10.33369/jkf.3.3.223-231

References

  1. Kim SS, Han DH, Cho SB. Microwave absorbing properties of sintered Ni-Zn ferrite. IEEE Trans Magn. 1994;30(6):4554–6.
  2. Yang Y, Gupta MC, Dudley KL, Lawrence RW. Novel carbon nanotube? polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005;5(11):2131–4.
  3. Zhang XZ, Sun W. Microwave absorbing properties of double- layer cementitious composites containing Mn-Zn ferrite. Cem Concr Compos. 2010;32:726–30.
  4. Hashisho Z, Rood MJ, Barot S, Bernhard J. Role of functional groups on the microwave attenuation and electric resistivity of activated carbon fiber cloth. Carbon N Y. 2009;47(7):1814–23.
  5. Folgueras LDC, Nohara EL, Faez R, Rezende MC. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline. Mater Res. 2007;10(1):95–9.
  6. Park KY, Lee SE, Kim CG, Han JH. Application of MWNT-added glass fabric/epoxy composites to electromagnetic wave shielding enclosures. Compos Struct. 2007;81(3):401–6.
  7. Liu YJ, Zhao XM. The Research on the Dielectric Constant of Polyester Knitted Fabrics. Adv Mater Res. 2015;1089:42–5.
  8. Guers C, Garet F, Xavier P, Huber P, Depres G, Artillan P, et al. Moisture Effect on the Characteristics of Cellulosic Material Made RF Lines. In: ARFTG Microwave Measurement Conference (ARFTG). 2018. p. 1–4.
  9. Kombolias M, Obrzut J, Postek MT, Poster DL, Obeng YS. Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper Aging. Anal Lett. 2020;53(3):424–35.
  10. Raghunathan SP, Narayanan S, Poulose AC, Joseph R. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydr Polym. 2017;157:1024–32.
  11. Takechi S, Teramoto Y, Nishio Y. Improvement of dielectric properties of cyanoethyl cellulose via esterification and film stretching. Cellulose. 2016;23(1):765–77.
  12. Ivanovska A, Cerovic D, Tadic N, Castvan IJ, Asanovic K, Kostic M. Sorption and dielectric properties of jute woven fabrics: Effect of chemical composition. Ind Crops Prod. 2019;140:111632.
  13. Lv H, Wang X, Ma C, Ma L. Estimating the Dielectric Constant of Cellulose Acetate Fiber Aggregation with Its Components Volume Fraction. J Eng Fiber Fabr. 2017;12(3).
  14. Bayraktar Ö, Uzer D, Gültekin SS, Top R. Usage of T-Resonator Method at Determination of Dielectric Constant of Fabric Materials for Wearable Antenna Designs. In: Materials Today: Proceedings. 2019. p. 1796–802.
  15. Eccleston KW, Scott SM, Brooksby PA, Fowler I, Sevier SA. Wool-Air Mix Permittivity Measurement. In: Asia-Pacific Microwave Conference (APMC). 2018. p. 902–4.
  16. Cholewi?ska P, Michalak M, Wyrostek A, Czy? K, ?uczycka D. Influence of the content of impurities and greasy on the results of heat resistance and hair cover dielectricity on the basis of wool from Huacaya alpaca and Racka sheep. Anim Sci. 2019;58(1):58.
  17. Liu Y, Li W, Zhao X. Influence of the Yarn Fineness and Stitch Length of Polyester Knitted Fabric on the Dielectric Constant. Fibres Text East Eur. 2019;138(6):63–6.
  18. Yuan D, Xu Y, Huang L, Ma, J., Peng Q, Ren Y, Cai X. Novel prominent nylon-1 with excellent dielectric properties and a high Curie point,. J Mater Chem. 2019;7(6):1641–50.
  19. Matsuda Y, Oishi T, Barique MA, Tasaka S. Crystalline structure and the unusual dielectric behavior of nylon 93. Polym J. 2019;51(4):433–8.
  20. Mirzaee M, Noghanian S. printed antenna using biocompatible dielectric material and graphene. Science Meeting, hal. In: IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio. 2017. p. 2543–4.
  21. Hearle JW, Morton WE. Physical properties of textile fibres. Elsevier.