Main Article Content

Abstract

ABSTRAK

 

Klorofil merupakan pigmen berwarna hijau yang terdapat pada tumbuhan atau daun yang berwarna hijau. Pigmen klorofil berfungsi menyerap energi cahaya dan mengkonversi energi cahaya tersebut menjadi energi kimia. Selain itu, klorofil juga dapat mentransfer elektron, sehingga pigmen ini dapat digunakan sebagai fotosensitizer alami pada perangkat sel surya tersensitisasi dye (DSSC). Fotosensitizer alami memiliki beberapa kelebihan seperti harganya yang murah, jumlah berlimpah, ramah lingkungan, dan proses sintesis yang mudah. Tanaman cincau (Cyclea barbata) merupakan tanaman yang populer di Indonesia. Tanaman ini sering digunakan pada industri makanan, minuman, farmasi, dan lain sebagainya. Penelitian ini bertujuan untuk mengidentifikasi pigmen klorofil dan besar celah energi pada daun Cyclea barbata yang akan diaplikasikan pada sel surya tersensitisasi dye (DSSC). Prosedur kerja dalam penelitian ini yaitu: (1) ekstraksi pigmen klorofil, (2) pemurnian pigmen klorofil, (3) karakterisasi pigmen klorofil, dan (4) penentuan besar celah energi pigmen klorofil. Pigmen klorofil daun Cyclea barbata diekstraksi menggunakan larutan etanol dengan perbandingan 1:5 (volum/volum). Proses pemurnian pigmen dilakukan dengan teknik evaporasi pada suhu 30°- 40°C. Karakterisasi UV-Vis digunakan untuk mengetahui rentang penyerapan pigmen klorofil dan celah energi yang terdapat pada daun Cyclea barbata. Hasil penelitian menujukkan rentang penyerapan pigmen daun Cyclea barbata terletak pada rentang panjang gelombang 402 nm dan 660 nm. Celah energi pigmen daun Cyclea barbata diperoleh sebesar 1,804 eV.

Kata  kunci—klorofil, celah energi, fotosensitizer alami, DSSC.

 

ABSTRACT

 

Chlorophyll is a green pigment found in green-coloured plants or leaves. Chlorophyll pigment absorbs energy from light and convert it into chemical energy. Moreover, it can transfer electrons, so it can be used as a natural photosensitizer on dye-sensitized solar cell (DSSC) device. Natural photosensitizer has several advantages, such as its lower cost, abundant quantities, eco-friendly, and easy to synthesize. Grass jelly (Cyclea barbata) is a popular plant in Indonesia. The plant is often used in the food, beverage, and pharmaceutical industry. This research aimed to identify the chlorophyll pigment and gap energy from Cyclea barbata leaf which will be applied to dye-sensitized solar cell (DSSC). The procedures in this research were: (1) extracted the chlorophyll pigment, (2) purified the chlorophyll pigment, (3) characterized the chlorophyll pigment, and (4) determined the gap energy of the chlorophyll pigment. Chlorophyll pigment of Cyclea barbata leaf was extracted using ethanol solution with ratio 1:5 (v/v). Pigment purification process was held using evaporation technique at temperature of 30°-40°C. UV-Vis characterization was carried out to determine the range of chlorophyll pigment absorbance and gap energy of Cyclea barbata leaf. The result showed that the range of chlorophyll pigment absorbance lies in wavelength about 402 nm and 660 nm. The gap energy of chlorophyll pigment from Cyclea barbata leaf was obtained at 1,804 eV.

 

Keywords—chlorophyll, gap energy, natural photosensitizer, DSSC.

Keywords

klorofil celah energi fotosensitizer alami DSSC

Article Details

How to Cite
Saleh, I., & Halidun, W. O. N. S. (2022). IDENTIFIKASI PIGMEN KLOROFIL DAN CELAH ENERGI PADA DAUN CINCAU (CYCLEA BARBATA) SEBAGAI FOTOSENSITIZER ALAMI UNTUK APLIKASI DSSC. Jurnal Kumparan Fisika, 5(1), 31–36. https://doi.org/10.33369/jkf.5.1.31-36

References

  1. Sekretariat Jenderal Dewan Energi Nasional. Laporan Hasil Analisis Neraca Energi Nasional 2021. Jakarta; 2021.
  2. Norasikin A.L., et.al. 2014. Review on the development of natural dye photosensitozer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews 31 (2014) 386 – 396
  3. Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F.E., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin M.K., Gratzel M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem. 6 (2014) 242-247, https://doi.org/10.1038/nchem.1861.
  4. Adedokun, O., Adedeji O. L., Bello I. T., Awodele, M. K., Awodugba, A. O., Fruit peels pigment extracts as a photosensitizer in ZnO-based Dye-Sensitized Solar Cells. Chemical Physics Impact 2 (2021) 100039
  5. Mohamad I.S., Ismail S.S., Norizan M.N., Murad S.A.Z., Abdullah M.M.A., ZnO photoanode effect on the efficiency performance of organic based dye sensitized solar cell209 (2017) 012028.
  6. Kumar V., Goudar H.Y., Kaladgi A.R., Madhusudhana, H.K., Buradi A., Afzal A., Saleel A., 2021. Preparation of dye (Bala gidda) for DSSC application. Article in Press. Materials Today: Proceedings.
  7. Alhamed M., Issa A.S., Doubal W., Studying of natural dyes properties as photo-sensitizer for dye sensitized solar cells (DSSC) Journal of electron Devices 16 (11) (2012) 1370-1383.
  8. Prima E.C., Qibtiya M.A., Yuliarto B., Suyatman, Dipojono H.K., Influence of anthocyanin co-pigment on electron transport and performance in black rice dye-sensitized solar cells. Ionics. 2016. DOI 10.1007/s11581-016-1673-6
  9. Prima E.C., Yuliarto B., Suendo V., Suyatman, Improving photochemical properties of Ipomea pescaprae, Imperata cylindrica (L.) Beauv, and Paspalum conjugatum Berg as photosensitizers for dye sensitized solar cells. J Mater Sci: Mater Electron (2014) 25: 4603 – 4611.
  10. Septiawan T.Y., Sumardiasih S., Obina W. M., Supriyanto A., Khairuddin, Cari C., The Increased of Photovoltaic Dye-Sensitized Solar Cell (DSSC) Efficiency using Nanocomposite ZnO/TiO2 with Natural Dye Leaves of Grass Jelly (Cyclea barbata). AIP Conference Proceedings 1868, 060010 (2017). Available from: https//doi.org/10/1063/1.4995174
  11. Sari M., Tamrin, Kaban J., Alfian Z., A Novel Composite Membrane Pectin from Cyvlea Barbata Miers blend with Chitosan for accelarated Wound Healing. Polymer Testing 99 (2021) 107207.
  12. Kusmardiyani S., Insanu M., Asyhar M.A., Effect A Glycosidic Flavonol Isolated from Green Grass Jelly (Cyclea barbata Miers) Leaves. Procedia Chemistry 13 (2014) 194 -97.
  13. Halidun, W.O.N.S., Prima E.C., Yuliarto B., Suyatman, Fabrication dye sensitized solar cell (DSSC) using ?-carotene pigment based natural dye. MATEC Web of Conferences 159, 02052 (2018), https://doi.org/10.1051/matecconf/201815902052.
  14. Schlaf R., Schroder P.G., Nelson M.W., Parkinson B.A., Merriitt C.D., Crisafulli L.A., Murata H., Kafafi Z.H., Determination of interface Dipole and Bending at The Ag/tris (8-hidroxyquinolinato) Gallium Organic Schottky Contact by Ultraviolet Photoemission Spectroscopy. Surface Science 450 (2000) 142 – 152.
  15. Shanmugam V., Manoharan S., Sharafali A., Anandan S., Murugan R., Green grasses as light harvesters in dye sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135 (2015) 947-952.
  16. Adyaksa G.W.P., Prima E.C., Lee D.K., Ock I., Suyatman, Yuliarto B., Kang J.K., A Light Harvesting Antenna Using Natural Extract Graminoids Coupled with Plasmonic Metal Nanoparticles for Bio-Photovoltaic Cells. Adv. Energy Mater. 2014. 1400470.
  17. Calogero G., Citro I., Marco G. D., Minicante S.A., Morabito M., Genovese G., Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117 (2014) 702-706.