Main Article Content

Abstract

Pemanfaatan limbah sekam padi (Oryza sativa) yang kurang maksimal di Dusun Glendang, Desa Watuagung, membuat peneliti berupaya untuk memanfaatkan limbah ini sebagai karbon aktif karena komponen senyawa penyusun dan kenaikan harga ekonomisnya. Tujuan dalam penelitian ini adalah menentukan karakteristik karbon aktif sekam padi yang dipengaruhi oleh suhu aktivasi dan tahap pemrosesan awal menggunakan NaOH. Penelitian dilakukan dengan tahap refluks NaOH pada serbuk sekam padi, aktivasi dengan rasio impregnasi karbon:H3PO4 30% (1:4, b/b), pemanasan pada variasi suhu 400°C hingga 800°C, serta karakterisasi menggunakan instrumen FT-IR, XRD, dan SEM-EDX. Suhu optimum pada penelitian ini didapatkan pada karbon aktif sekam padi 600°C (KASP 600) dan karbon aktif sekam padi basa 700°C (KASPB 700) dimana keduanya mengandung gugus fungsional -O-H, -C-H, -C?C, -C=C, -C=O, -Si-O, dan -C-O. Sifat kristalinitas kedua karbon aktif ini terdiri atas fase campuran amorf dan kristalin silika pada kisaran 2?= 22° dan 24° dengan latar belakang luas. Berdasarkan hasil analisa SEM-EDX, tahap pemrosesan awal menggunakan NaOH berdampak menurunkan sebesar 1,21% kandungan silika anorganik pada karbon aktif sekam padi yang membuat strukturnya terlihat lebih banyak lubang atau retakan. Dominasi unsur penyusun karbon aktif sekam padi dalam penelitian ini secara berurutan adalah O, C, P, Si, dan Na.

Keywords

impregnasi H3PO4 karbon aktif pemrosesan awal NaOH sekam padi suhu aktivasi

Article Details

How to Cite
Riyanto, C. A., Kurniawan, E., & Aminu, N. R. (2021). Pengaruh NaOH dan Suhu Aktivasi Terhadap Karakteristik Karbon Aktif Sekam Padi Teraktivasi H3PO4. RAFFLESIA JOURNAL OF NATURAL AND APPLIED SCIENCES, 1(2), 59–68. https://doi.org/10.33369/rjna.v1i2.16864

References

  1. Hermanto, “Luas Panen dan Produksi Padi di Indonesia 2019,” 2020. Available: https://www.bps.go.id.
  2. L. Xiong, K. Saito, E. H. Sekiya, P. Sujaridworakun, and S. Wada, “Influence of Impurity Ions on Rice Husk Combustion,” Journal Metals, Materials, and Minerals., vol. 19, no. 2, pp. 73–77, 2009. Available: https://pdfs.semanticscholar.org/00d3/4b9850a4cdb14fb7c06042b50e7351e4ca65.pdf.
  3. H. Xu et al., “Nanoporous Activated Carbon Derived from Rice Husk for High Performance Supercapacitor,” Journal of Nanomaterials., vol. 2014, pp. 1–8, 2014, doi: dx.doi.org/10.1155/2014/714010.
  4. K. Le Van, T. Luong, and T. Thu, “Preparation of Pore-Size Controllable Activated Carbon from Rice Husk Using Dual Activating Agent and Its Application in Supercapacitor,” Journal of Chemistry., vol. 2019, pp. 1–11, 2019, doi: https://doi.org/10.1155/2019/4329609.
  5. E. Menya, P. W. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and Performance of Activated Carbon from Rice Husks for Removal of Natural Organic Matter from Water : A Review,” Chemical Engineering Research and Design., vol. 129, pp. 271–296, 2017, doi: 10.1016/j.cherd.2017.11.008.
  6. Z. Heidarinejad, M. Dehghani, Mohammad Hadi Heidari, G. Javedan, I. Ali, and M. Sillanpaa, “Methods for Preparation and Activation of Activated Carbon: a Review,” Environmental Chemistry Letters., no. January, 2020, doi: 10.1007/s10311-019-00955-0.
  7. L. K. Shrestha et al., “Nanoporous Carbon Materials with Enhanced Supercapacitance Performance and Non-aromatic Chemical Sensing with C1/C2 Alcohol Discrimination,” Science and Technology of Advanced Materials., vol. 17, no. 1, pp. 483–492, 2016, doi: 10.1080/14686996.2016.1219971.
  8. R. Alfianto, “Kajian Pembuatan Arang Aktif dari Sekam Padi dengan Teknik Pelarutan Silika,” Institut Pertanian Bogor, 2011.
  9. Available: https://repository.ipb.ac.id/handle/123456789/54031
  10. C. A. Riyanto, M. S. Ampri, and Y. Martono, “Synthesis and Characterization of Nano Activated Carbon from Annatto Peels ( Bixa orellana L .) Viewed from Temperature Activation and Impregnation Ratio of H3PO4,” Journal of Sciences and Data Analysis., vol. 1, no. 1, pp. 44–50, 2020, doi: 10.20885/EKSAKTA.vol1.iss1.art.
  11. C. A. Riyanto, E. Prabalaras, and Y. Martono, “Karakterisasi Nanopartikel Karbon Aktif dari Daun Eceng Gondok (Eichhornia crassipes) Berdasarkan Variasi Suhu dan Waktu Aktivasi,” Jurnal Kimia dan Kemasan, vol. 42, no. 2, p. 85, 2020, doi: 10.24817/jkk.v42i2.5633.
  12. Y. Luo, D. Li, X. Sun, Q. Cao, and X. Liu, “The Performance of Phosphoric Acid in the Preparation of Activated Carbon-containing Phosporus Species from Rice Husk Residue,” Jornal of Materials Science., 2018, doi: 10.1007/s10853-018-03220-x.
  13. A. ?encan and M. Kiliç, “Investigation of the Changes in Surface Area and FT-IR Spectra of Activated Carbons Obtained from Hazelnut Shells by Physicochemical Treatment Methods,” Journal of Chemistry., vol. 2015, 2015, doi: 10.1155/2015/651651.
  14. B. D. Mistry, A Handbook of Spectroscopy Data Chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy), 2009th ed. Jaipur, India: Oxford Book Company, 2009.
  15. A. M. Puziy, O. I. Poddubnaya, R. P. Socha, J. Gurgul, and M. Wisniewski, “XPS and NMR Studies of Phosphoric Acid Activated Carbons,” Carbon., vol. 46, no. 15, pp. 2113–2123, 2008, doi: 10.1016/j.carbon.2008.09.010.
  16. R. Ghosh and S. Bhattacherjee, “A Review Study on Precipitated Silica and Activated Carbon from Rice Husk,” Chemical Engineering & Process Technology., vol. 4, no. 4, 2013, doi: 10.4172/2157-7048.1000156.
  17. E. Pehlivan, “Research Article Production and Characterization of Activated Carbon From Pomegranate Pulp by Phosphoric Acid,” Jornal of Turkish Chemical Society Chemistry., vol. 5, pp. 1–8, 2018, doi: 10.18596/jotcsa.370738.
  18. J. N. Sahu, “Preparation of Granular Activated Carbon from Oil Palm Shell by Microwave-induced Chemical Activation : Optimisation using Surface Response Methodology,” Chemical Engineering Research and Design., pp. 1–10, 2013, doi: 10.1016/j.cherd.2013.06.004.
  19. C. E. Ilochonwu, C. O. Nwajagu, E. I. Nwonye, and I. U. Onyenanu, “Effect of Temperature in Extraction of High Purity Amorphous Silica from Rice Husk for Silicon Production,” TMS (The Minerals, Metals & Materials Society., pp. 269–270, 2015, doi: 10.1007/978-3-319-48214-9_26.
  20. M. S. Shamsuddin, N. R. N. Yusoff, and M. A. Sulaiman, “Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation,” Procedia Chemistry., vol. 19, pp. 558–565, 2016, doi: 10.1016/j.proche.2016.03.053.
  21. S. Somasundaram, K. Sekar, V. Kumar, and S. Ganesan, “Synthesis and Characterization of Mesoporous Activated Carbon from Rice Husk for Adsorption of Glycine from Alcohol-aqueous Mixture,” Journal of Molecular Liquids., vol. 177, pp. 416–425, 2013, doi: 10.1016/j.molliq.2012.09.022.
  22. Y. O. Abiodun and A. A. Jimoh, “Microstructural Characterisation, Physical and Chemical Properties of Rice Husk Ash as Viable Pozzolan in Building Material: A Case Study of Some Nigerian Grown Rice Varieties,” Nigerian Journal of Technology., vol. 37, no. 1, p. 71, 2018, doi: 10.4314/njt.v37i1.10.
  23. T. H. Liou and S. J. Wu, “Characteristics of Microporous/Mesoporous Carbons Prepared from Rice Husk Under Base- and Acid-treated Conditions,” Journal of Hazardous Materials., vol. 171, no. 1–3, pp. 693–703, 2009, doi: 10.1016/j.jhazmat.2009.06.056.
  24. H. Marsh and F. R. Reinoso, Activated Carbon, 1st ed. Elsevier Science Ltd, 2006.
  25. F. D. Kurniati, Pardoyo, and Suhartana, “Sintesis Arang Aktif dari Tempurung Kelapa dan Aplikasinya untuk Adsorbsi Asap Cair,” Jurnal Kimia Sains dan Aplikasi., vol. 14, no. 3, pp. 72–76, 2011. Available: https://ejournal.undip.ac.id/index.php/ksa.