Main Article Content

Abstract

Papaya is one type of fruit that is widely consumed and cultivated by the farmer. However, genetic analysis has not been carried out on various types of papaya available on the market. This aims to determine the genetic diversity of papaya plants that can become genetic resources to fullfil food needs and genetic resources for breeders. Genetic analysis was conducted by Random Amplified Polymorphic DNA (RAPD) method using 11 papaya varieties consisting of Calina, Bangkok, Red Pomegranate, Sunrise, Orange Lady, Red Lady, Taiwan, Arum, Miba, Golden, and Local and using 15 RAPD primers consisting of OPA-1, OPA-2, OPA-8, OPA-16, OPC-4, OPC-11, OPC-13, OPC-20, OPD-20, OPE-2, OPE-6, OPE-11, OPE-14, OPM-6, and OPY-15. PCR-RAPD results were translated into binary data and then cluster analysis was conducted using the Unweighted Pair-Group Method Arithmetic (UPGMA) method using the Numerical Taxonomy and Multivariate System (NTSYS) program. The PCR-RAPD results of 11 papaya varieties successfully amplified 8 out of 15 primers that formed 112 DNA bands with 85 polymorphic bands. Genetic diversity analysis showed the results at 90% similarity coefficient formed 9 groups.  Group 1 consists of Bangkok and Sunrise varieties. Group 2 consists of Red Pomegranate and Arum varieties. Groups 3 to 9 consisted of Calina, Miba, Local, Golden, Orange Lady, Red Lady, and Taiwan varieties, respectively.

Keywords

Genetic Papaya RAPD

Article Details

References

  1. Anggereini, E. (2008). Random amplified polymorphic DNA (RAPD), suatu metode analisis DNA dalam menjelaskan berbagai fenomena biologi. Biospecies, 1(2), 73–76. https://online-journal.unja.ac.id/biospecies/article/view/274
  2. Azrai, M. (2005). Pemanfaatan markah molekuler dalam proses seleksi pemuliaan tanaman. Jurnal AgroBiogen, 1(1), 26–37. https://dx.doi.org/10.21082/jbio.v1n1.2005.p26-37
  3. Chaves-Bedoya, G., & Nuñez, V. (2007). A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica, 153, 215–220. https://link.springer.com/article/10.1007/s10681-006-9256-7
  4. Chávez-Pesqueira, M., & Núñez-Farfán, J. (2017). Domestication and genetics of papaya: A review. Frontiers in Ecology and Evolution, 5, 1–9. https://doi.org/10.3389/fevo.2017.00155
  5. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. In Phytochemical Bulletin, 19(1), 11–15. https://worldveg.tind.io/record/33886/
  6. Hasnah, T. M. (2014). Keragaman genetik meranti (Shorea leprosula Miq.) asal Kalimantan dengan analisis isozim. Jurnal Penelitian Dipterokarpa, 8(1), 35–46. http://ejournal.forda-mof.org/ejournal-litbang/index.php/JPED/article/view/1338
  7. Herman, H., Nainggolan, M., & Roslim, D. I. (2018). Optimasi suhu annealing untuk empat primer RAPD pada kacang hijau (Vigna radiata L.). Dinamika Pertanian, 34(1), 41–46. DOI: https://migrasi.journal.uir.ac.id/index.php/dinamikapertanian/article/view/4081
  8. Indriyani, N. L. P., Affandi, & Sunarwati, D. (2008). Pengelolaan kebun pepaya sehat. Balai Penelitian Tanaman Buah Tropika. https://opac.perpusnas.go.id/DetailOpac.aspx?id=222095
  9. Kanupriya, Shobhana, M., Vasugi, C., Aswath, C., Radhika, V., Reddy, L., & Dinesh, M. R. (2012). Genetic relationship among papaya (Carica papaya) and wild papaya (Vasconcellea species) using RAPD and ISSR markers. Indian Journal of Agricultural Sciences, 82(4), 366–369. https://krishi.icar.gov.in/jspui/handle/123456789/50628
  10. Kumar, D., Yadav, P., Yadav, A., Dwivedi, U. N., & Yadav, K. (2019). Genetic diversity analysis among papaya (Carica papaya L.) varieties using RAPD markers. International Journal of Traditional Medicine and Applications, 1(1), 22–27. DOI: https://www.researchgate.net/publication/332014104
  11. Pharmawati, M. (2009). Optimalisasi ekstraksi DNA dan PCR-RAPD pada Grevillea spp. (Proteaceae). Jurnal Biologi, 8(1), 12–16. https://ojs.unud.ac.id/index.php/bio/article/view/577
  12. Prihatini, R., & Budiyanti, T. (2019). Aplikasi marker RAPD dalam seleksi sex tanaman pepaya (Carica papaya). Comm. Horticulturae Journal, 3(1), 1–5. DOI: http://horticulturae.ipb.ac.id/index.php/commhort/article/view/70
  13. Puspitaningrum, R., Adhiyanto, C., & Solihin. (2018). Genetika molekuler dan aplikasinya. Jakarta. DOI: https://repository.uinjkt.ac.id/dspace/bitstream/123456789/49517/1/1.2.2%20Genetika%20Molekuler%20dan%20Aplikasinya%20%28buku%29.pdf
  14. Sabara, P., & Vakharia, D. (2018). Genetic diversity study in papaya (Carica papaya L.) cultivars using RAPD and ISSR markers. Indian Journal of Biotechnology, 17(1), 101–109. DOI: https://nopr.niscpr.res.in/handle/123456789/44820
  15. Sitepu, A. F., Sartini Bayu, E., Aziz, L., & Siregar, M. (2019). Analisis pola pita beberapa genotipe kurma (Phoenix dactylifera L.) menggunakan primer RAPD. Jurnal Online Agroekotekonogi, 7(3), 502–507. DOI: https://talenta.usu.ac.id/joa/article/view/5217
  16. Syafaruddin, S., & Santoso, T. J. (2011). Optimasi teknik isolasi dan purifikasi DNA yang efisien dan efektif pada kemiri sunan (Reutalis trisperma (Blanco) Airy Shaw). Jurnal Penelitian Tanaman Industri, 17(1), 11-17. https://onesearch.id/Record/IOS1877.article-2064
  17. Zulfahmi. (2013). Penanda DNA untuk analisis genetik tanaman. Jurnal Agroteknologi, 3(2), 41–52. https://ejournal.uin-suska.ac.id/index.php/agroteknologi/article/view/87