Main Article Content
Abstract
Cocopeat, a growing medium derived from coconut husk fibers, is valued for its high porosity, strong water retention, and support for healthy root development. However, its physical properties may also provide favorable conditions for plant-parasitic nematodes. This study reports, for the first time, the occurrence of Meloidogyne incognita in melon (Cucumis melo L.) cultivated in cocopeat in Bengkulu, Indonesia, and examines the susceptibility of this medium to infestation. Root samples were purposively collected from six infected plants showing stunted growth, wilting, and root galling. Adult female nematodes were extracted and identified morphologically through perineal pattern analysis. The diagnostic features, such as a tall, narrow dorsal arch, fine striae, and the absence of lateral lines, consistently matched those of M. incognita. Galls of varying sizes were observed in all samples, indicating different infection intensities. This finding suggests that the physical structure of cocopeat may facilitate nematode mobility and persistence across growth stages. The study highlights that cocopeat is not inherently nematode-free despite its agronomic advantages and should be managed through preventive strategies, including substrate sterilization, sanitation, and regular nematode monitoring.
Keywords
Article Details
Copyright (c) 2025 Ilmi Hamidi, Ariffatchur Fauzi, Djamilah, Agustin Zarkani, Turko Prastio

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in the Jurnal AGRITROPICA agrees to the following terms:
Author retains the copyright and grants the Journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Submission of a manuscript implies that the submitted work has not been published before (except as part of a thesis or report, or abstract); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors. If and when the manuscript is accepted for publication, the author(s) still hold the copyright and retain publishing rights without restrictions. For the new invention, authors are suggested to manage its patent before published. The license type is CC-BY-SA 4.0.
AGRITROPICA is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
References
- Agung, H. (2023). Efficacy of Soilless Substrates on Vegetable Output and Yield Enhancement. Agrotechnology, 12(3). https://doi.org/10.35248/2168-9891.23.12.324
- Al-Ajlouni, M. G., Othman, Y. A., Abu-Shanab, N. S., & Alzyoud, L. F. (2024). Evaluating the Performance of Cocopeat and Volcanic Tuff in Soilless Cultivation of Roses. Plants, 13(16), 2293. https://doi.org/10.3390/ plants13162293
- Assoumana, B. T., Habash, S., Ndiaye, M., Van derPuije, G., Sarr, E., Adamou, H., Grundler, F. M. W., & Elashry, A. (2017). First report of the root‐knot nematode Meloidogyne enterolobii parasitising sweet pepper (Capsicum annuum) in Niger. New Disease Reports, 36(1), 18–18. https://doi.org/10.5197/j.2044-0588.2017.036.018
- Atikah, T. A., Alvianah, A., Saraswati, D., & Zubaidah, S. (2023). Growth Of Melon (Cucumis Melo L.) Varieties On Different Plant Media Compositions In Conditions Of Hydroponic Drip Irrigation. Russian Journal of Agricultural and Socio-Economic Sciences, 137(5), 98–108. https://doi.org/10.18551/rjoas.2023-05.10
- Cabrera, V. A., Doucet, M. E., & Lax, P. (2023). Histopathology of the root-knot nematode, Meloidogyne incognita, on ornamental plants (Crassulaceae). Journal of Plant Diseases and Protection, 130(4), 891–897. https://doi.org/10.1007/s41348-023-00726-8
- Diniz, G. M. M., Candido, W. D. S., Soares, R. S., Santos, L. D. S., Marín, M. V., Soares, P. L. M., & Braz, L. T. (2016). Reaction of melon genotypes to Meloidogyne incognita and Meloidogyne javanica. Pesquisa Agropecuária Tropical, 46(1), 111–115. https: //doi.org/10.1590/1983-40632016v4639603
- Djamilah, D., Ginting, S. Br., Priyatiningsih, P., & Putra, A. (2023). Diversity and Population Density of Nematodes in Melons in Bengkulu City. AGRITROPICA : Journal of Agricultural Sciences, 6(1), 43–50. https://doi.org/10.31186/j.agritropica.6.1.43-50
- Eisenback, J. D., Hirschmann, H., Sasser, J. N., & Triantaphyllou, A. C. (1981). A Guide to the Most Common Species of Root-Knot Nematode (Meloidogyne spp.), With a Pictorial Key. Cooperative Publication Department of Plant Pathology and US Agency International Development.
- Fatimah, N., Askary, T. H., & Abd‐Elgawad, M. M. M. (2025). Factors influencing the performance of entomopathogenic nematodes: From laboratory to field conditions. Egyptian Journal of Biological Pest Control, 35(29). https://doi.org/ 10.1186/s41938-025-00864-1
- Gilchrist-Saavedra, L., Fuentes-Davila, G., & Martinez-Cano, C. (1997). Practical guide to the identification of selected diseases of wheat and barley. CIMMYT.
- Hamidi, I., Supramana, S., Mutaqin, K. H., & Kurniawati, F. (2022). Spesies Meloidogyne Penyebab Ubi Kentang Berbintil pada Tiga Sentra Produksi di Sumatra. Jurnal Fitopatologi Indonesia, 18(2), 66–74. https://doi.org/10.14692/jfi.18.2.66–74
- Idhmida, A., Niama Heimeur, Khadija Basaid, Bouchra Chebli, James Nicolas Furze, Khalid Azim, Abdelhamid Elmousadik, Lalla Mina Idrissi Hassani, Zahra Ferji, & El Hassan Mayad. (2024). Optimizing Peganum harmala L. and Ricinus communis L. for Sustainable Nematode Control and Growth Stimulation in Melon Cultivation. Journal of Natural Sciences Research, 15(3), 30–40. https://doi.org/10.7176/jnsr/15-3-03
- Nisa, R. U., Nisa, A. U., Hroobi, A. A., Shah, A. A., & Tantray, A. Y. (2022). Year-Long Assessment of Soil Nematode Diversity and Root Inhibition-Indicator Nematode Genera in Rice Fields. Biology, 11(11), 1572. https://doi.org/10.3390/biology11111572
- Ploeg, A. T., & Edwards, S. (2024). Host status of melon, carrot, and Meloidogyne incognita-susceptible and -resistant cotton, cowpea, pepper, and tomato for M. floridensis from California. Journal of Nematology, 56(1). https://doi.org/10.2478/jofnem-2024-0004
- Rahman, S., Sarma, H. H., Sarmah, R., & Das, S. (2024). Impact of Hydroponics Technique on Root Characteristics and Physiological Parameters in Chrysanthemum. Journal of Advances in Biology & Biotechnology, 27(8), 897–905. https://doi.org/10.9734/jabb /2024/v27i81210
- Rajaseger, G., Chan, K. L., Tan, K. Y., Ramasamy, S., Khin, M. C., Amaladoss, A., & Haribhai, P. K. (2023). Hydroponics: Current trends in sustainable crop production. Bioinformation, 19(9), 925–938. https://doi.org/10.6026/97320630019925
- Sato, K., Uehara, T., Holbein, J., Sasaki-Sekimoto, Y., Gan, P., Bino, T., Yamaguchi, K., Ichihashi, Y., Maki, N., Shigenobu, S., Ohta, H., Franke, R. B., Siddique, S., Grundler, F. M. W., Suzuki, T., Kadota, Y., & Shirasu, K. (2021). Transcriptomic Analysis of Resistant and Susceptible Responses in a New Model Root-Knot Nematode Infection System Using Solanum torvum and Meloidogyne arenaria. Frontiers in Plant Science, 12, 680151. https://doi.org/10.3389/fpls.2021. 680151
References
Agung, H. (2023). Efficacy of Soilless Substrates on Vegetable Output and Yield Enhancement. Agrotechnology, 12(3). https://doi.org/10.35248/2168-9891.23.12.324
Al-Ajlouni, M. G., Othman, Y. A., Abu-Shanab, N. S., & Alzyoud, L. F. (2024). Evaluating the Performance of Cocopeat and Volcanic Tuff in Soilless Cultivation of Roses. Plants, 13(16), 2293. https://doi.org/10.3390/ plants13162293
Assoumana, B. T., Habash, S., Ndiaye, M., Van derPuije, G., Sarr, E., Adamou, H., Grundler, F. M. W., & Elashry, A. (2017). First report of the root‐knot nematode Meloidogyne enterolobii parasitising sweet pepper (Capsicum annuum) in Niger. New Disease Reports, 36(1), 18–18. https://doi.org/10.5197/j.2044-0588.2017.036.018
Atikah, T. A., Alvianah, A., Saraswati, D., & Zubaidah, S. (2023). Growth Of Melon (Cucumis Melo L.) Varieties On Different Plant Media Compositions In Conditions Of Hydroponic Drip Irrigation. Russian Journal of Agricultural and Socio-Economic Sciences, 137(5), 98–108. https://doi.org/10.18551/rjoas.2023-05.10
Cabrera, V. A., Doucet, M. E., & Lax, P. (2023). Histopathology of the root-knot nematode, Meloidogyne incognita, on ornamental plants (Crassulaceae). Journal of Plant Diseases and Protection, 130(4), 891–897. https://doi.org/10.1007/s41348-023-00726-8
Diniz, G. M. M., Candido, W. D. S., Soares, R. S., Santos, L. D. S., Marín, M. V., Soares, P. L. M., & Braz, L. T. (2016). Reaction of melon genotypes to Meloidogyne incognita and Meloidogyne javanica. Pesquisa Agropecuária Tropical, 46(1), 111–115. https: //doi.org/10.1590/1983-40632016v4639603
Djamilah, D., Ginting, S. Br., Priyatiningsih, P., & Putra, A. (2023). Diversity and Population Density of Nematodes in Melons in Bengkulu City. AGRITROPICA : Journal of Agricultural Sciences, 6(1), 43–50. https://doi.org/10.31186/j.agritropica.6.1.43-50
Eisenback, J. D., Hirschmann, H., Sasser, J. N., & Triantaphyllou, A. C. (1981). A Guide to the Most Common Species of Root-Knot Nematode (Meloidogyne spp.), With a Pictorial Key. Cooperative Publication Department of Plant Pathology and US Agency International Development.
Fatimah, N., Askary, T. H., & Abd‐Elgawad, M. M. M. (2025). Factors influencing the performance of entomopathogenic nematodes: From laboratory to field conditions. Egyptian Journal of Biological Pest Control, 35(29). https://doi.org/ 10.1186/s41938-025-00864-1
Gilchrist-Saavedra, L., Fuentes-Davila, G., & Martinez-Cano, C. (1997). Practical guide to the identification of selected diseases of wheat and barley. CIMMYT.
Hamidi, I., Supramana, S., Mutaqin, K. H., & Kurniawati, F. (2022). Spesies Meloidogyne Penyebab Ubi Kentang Berbintil pada Tiga Sentra Produksi di Sumatra. Jurnal Fitopatologi Indonesia, 18(2), 66–74. https://doi.org/10.14692/jfi.18.2.66–74
Idhmida, A., Niama Heimeur, Khadija Basaid, Bouchra Chebli, James Nicolas Furze, Khalid Azim, Abdelhamid Elmousadik, Lalla Mina Idrissi Hassani, Zahra Ferji, & El Hassan Mayad. (2024). Optimizing Peganum harmala L. and Ricinus communis L. for Sustainable Nematode Control and Growth Stimulation in Melon Cultivation. Journal of Natural Sciences Research, 15(3), 30–40. https://doi.org/10.7176/jnsr/15-3-03
Nisa, R. U., Nisa, A. U., Hroobi, A. A., Shah, A. A., & Tantray, A. Y. (2022). Year-Long Assessment of Soil Nematode Diversity and Root Inhibition-Indicator Nematode Genera in Rice Fields. Biology, 11(11), 1572. https://doi.org/10.3390/biology11111572
Ploeg, A. T., & Edwards, S. (2024). Host status of melon, carrot, and Meloidogyne incognita-susceptible and -resistant cotton, cowpea, pepper, and tomato for M. floridensis from California. Journal of Nematology, 56(1). https://doi.org/10.2478/jofnem-2024-0004
Rahman, S., Sarma, H. H., Sarmah, R., & Das, S. (2024). Impact of Hydroponics Technique on Root Characteristics and Physiological Parameters in Chrysanthemum. Journal of Advances in Biology & Biotechnology, 27(8), 897–905. https://doi.org/10.9734/jabb /2024/v27i81210
Rajaseger, G., Chan, K. L., Tan, K. Y., Ramasamy, S., Khin, M. C., Amaladoss, A., & Haribhai, P. K. (2023). Hydroponics: Current trends in sustainable crop production. Bioinformation, 19(9), 925–938. https://doi.org/10.6026/97320630019925
Sato, K., Uehara, T., Holbein, J., Sasaki-Sekimoto, Y., Gan, P., Bino, T., Yamaguchi, K., Ichihashi, Y., Maki, N., Shigenobu, S., Ohta, H., Franke, R. B., Siddique, S., Grundler, F. M. W., Suzuki, T., Kadota, Y., & Shirasu, K. (2021). Transcriptomic Analysis of Resistant and Susceptible Responses in a New Model Root-Knot Nematode Infection System Using Solanum torvum and Meloidogyne arenaria. Frontiers in Plant Science, 12, 680151. https://doi.org/10.3389/fpls.2021. 680151