Main Article Content

Abstract

This research aims to produce a 30 meter running speed equipment product athlete North Sumatra which is microcontroller based. It is hoped that this research will be able to overcome the difficulties faced by testers which have so far been carried out manually so that they are effective and effective objectivity The results of this test still cannot be categorized as accurate. This research uses an approach of research and development with the Borg and Gall model which is divided into three stages. The research stages are; (1) Pre-development stage, which one At this stage, a needs analysis is carried out through survey level of tool requirements for users, preparation instrument and consultation to experts. (2) Development stage develop products running speed 30 meters starting from developing initial product manuscripts (manual books), designing digital tools, trials small group, stage I improvement, trials large group, phase II improvement, mass production. (3) Evaluation stage implementation of product results and dissemination product. The results of the analysis from the trial I obtained an average value implementation of Microcontroller-Based 30 Meter Running Speed ​​Test Equipment based on data obtained for the answer "Yes" with a percentage of 81.38% and "No" with a percentage of 18.62%. The results of the analysis of trial II obtained an average value implementation plan prototype digital step frequency measuring test tool based on data obtained for the answer "Yes" with a percentage of 86.08% and "No" with a percentage of 13.92%. The conclusion in this research is that the test tool developed is valid because the calculation uses a digital system.

Keywords

Design Microcontroller Prototype Speed Test

Article Details

How to Cite
Bangun Setia Hasibuan, Suharjo, S., Afri Tantri, & Muhammad Reza Destya. (2023). Plan Prototype Microcontroller based 30 Meter Running Speed Test Equipment. Kinestetik : Jurnal Ilmiah Pendidikan Jasmani, 7(4), 1180–1189. https://doi.org/10.33369/jk.v7i4.29583

References

  1. Hadisman, H. M. T. (2021). Hubungan Daya Ledak Otot Tungkai Terhadap Kecepatan Lari 60 Meter Siswa Kelas V Putra Sd Negeri 005 Pendalian. Jurnal Sport Rokania, 1(2), 80–86. Https://E-Jurnal.Rokania.Ac.Id/Index.Php/Jsr
  2. Herman, I., Apriantono, T., Adiprawita, W., One, D. K., Yasin, D., Syahruddin, S., & Winata, B. (2021). Pengembangan Prototipe Sistem Track Timer Untuk Pengukuran Kecepatan Secara Otomatis Pada Sprint 60-Meter. Jurnal Keolahragaan, 9(1). Https://Doi.Org/10.21831/Jk.V9i1.33356
  3. Imran Akhmad, S. (2018). Bleep Test Countermeasures Test Using Infrared And Microcontroller Based Computer System. International Journal Of Science And Research (Ijsr), 7(8), 759–761. Https://Doi.Org/10.21275/Art2019550
  4. Kridasuwarso, B. (N.D.). Penyusunan Model Tes Kecepatan Reaksi Melalui Aba-Aba Start Dan Lari Cepat Sejauh 10-20 Meter. Https://Kbbi.Web.Id/Model
  5. Luzio de Melo, P., da Silva, M. T., Martins, J., & Newman, D. (2015). A microcontroller platform for the rapid prototyping of functional electrical stimulation‐based gait neuroprostheses. Artificial Organs, 39(5), E56-E66.
  6. Madisetti, V. K., & Egolf, T. W. (1995). Virtual prototyping of embedded microcontroller-based DSP systems. IEEE Micro, 15(5), 9-21.
  7. Maliza, A. S., Yusfi, H., & Ramadhan, A. (2023). Pengaruh latihan lari sprint 20 meter terhadap kecepatan tendangan dollyo chagi pada siswa ekstrakurikuler taekwondo. Jurnal Kejaora (Kesehatan Jasmani dan Olah Raga), 8(1), 88-93.
  8. Mamesah, E. D. (2015). Pengaruh Latihan Step Hurdle Terhadap Peningkatan Hasil Lari Sprint 60 Meter Pada Atlet Pra Remaja Putra Rawamangun Athletics Centre (Race). Motion, 6(1), 32–44.
  9. Meitri Ariyantini, K., Wayan Tianing, N., Gusti Ayu Artini, I., & Studi Fisioterapi, P. (N.D.). Pelatihan Lari Akselerasi Lebih Meningkatkan Kecepatan Lari 100 Meter Daripada Pelatihan Lari Interval Pada Siswa Sma Di Kabupaten Badung. In Majalah Ilmiah Fisioterapi Indonesia (Vol. 2).
  10. Mesnan, M., & Supriadi, A. (2022). Development Of Shoulder And Wrist Test Instruments Based On Digital. Kinestetik : Jurnal Ilmiah Pendidikan Jasmani, 6(2), 328–334. Https://Doi.Org/10.33369/Jk.V6i2.21913
  11. Mukherjee, A., Ray, S., & Das, A. (2014). Development of microcontroller based speed control scheme of BLDC motor using proteus VSM software. International Journal of Electronics and Electrical Engineering, 2(1), 1-7.
  12. Nagarajan, P. R., George, B., & Kumar, V. J. (2017). Improved single-element resistive sensor-to-microcontroller interface. IEEE Transactions on Instrumentation and Measurement, 66(10), 2736-2744.
  13. Nurulfa, R. (2017). Pengembangan Model Latihan Lari Cepat Berbasis Multilateral Untuk Anak Sekolah Dasar. Gladi Jurnal Ilmu Keolahragaan, 8(1), 37. Https://Doi.Org/10.21009/Gjik.081.03
  14. Rahmat, R., Rusdiana, A., & Supriyatna, A. (2016). Pengembangan Alat Ukur Kecepatan Lari Berbasis Microkontroler Dengan Interfacing Personal Computer. In Jurnal Terapan Ilmu Keolahragaan (Vol. 01, Issue 01).
  15. Rizal, A. A., Hafidhurrifqi, H., & Mahmudi, S. (2018). Ilmu Pengetahuan Dan Teknologi Dalam Olahraga. Seminar Nasional Ilmu Keolahragaan Unipma), 1(1), 127–131. Http://Prosiding.Unipma.Ac.Id/Index.Php/Snik/Index
  16. Rumini, S. K. R. L. S. R. (2012). Pengaruh Metode Latihan, Bentuk Latihan Kecepatan Dan Kelincahan Terhadap Prestasi Lari 100 Meter. Jurnal Media Ilmu Keolahragaan Indonesia, 2(1), 42–49. Http://Journal.Unnes.Ac.Id/Nju/Index.Php/Miki
  17. Sarik, J., & Kymissis, I. (2010, October). Lab kits using the Arduino prototyping platform. In 2010 IEEE Frontiers in Education Conference (FIE) (pp. T3C-1). IEEE.
  18. Siswanto. (2008). Validitas Sebagai Alat Penentuan Kehandalan Tes Hasil Belajar. 107–116.
  19. Siregar, V. M. M., Sinaga, K., & Hanafiah, M. A. (2022). A Prototype of Water Turbidity Measurement With Fuzzy Method using Microcontroller. Internet of Things and Artificial Intelligence Journal, 2(2), 75-97.
  20. Sugiyono. (2010). Prof. Dr. Sugiyono, Metode Penelitian Kuantitatif Kualitatif Dan R&D. Intro ( Pdf Drive).Pdf. In Bandung Alf (P. 143).
  21. Supriadi, A., & Mesnan, M. (2022a). Development Of Application Based Football Learning. Kinestetik : Jurnal Ilmiah Pendidikan Jasmani, 6(2), 297–304. Https://Doi.Org/10.33369/Jk.V6i2.21852
  22. Supriadi, A., & Mesnan, M. (2022b). Development Of Application Based Football Learning. Kinestetik : Jurnal Ilmiah Pendidikan Jasmani, 6(2), 297–304. Https://Doi.Org/10.33369/Jk.V6i2.21852
  23. Supriadi, A., & Nopember Haloho, J. M. (2022). Pengembangan Alat Tes Dan Pengukuran Tinggi Dan Berat Badan Berbasis Android. Jurnal Prestasi, 6(2), 48–57. Https://Jurnal.Unimed.Ac.Id/2012/Index.Php/Jpsi/Index
  24. Wicaksono, G. T., & Kusuma, D. A. (2021). Analisis Hasil Tes Sprint 30 Meter Dan Bleep Test Atlet Putri Ku 14 Club Basket Cls Surabaya. Jossae : Journal Of Sport Science And Education, 6(1), 1. Https://Doi .Org/10.26740/Jossae.V6n1.P1-8
  25. Zega, Y., Supriadi, A., & Novita, N. (2022). Speed Test And Measurement Tools Shooting Sensor Based. Kinestetik : Jurnal Ilmiah Pendidikan Jasmani, 6(2), 335–340. Https://Doi.Org/10.33369/Jk.V6i2.22232