Main Article Content

Abstract

High-intensity interval training is a form of exercise that involves strenuous activity over a short period of time followed by a recovery period with rest or low-intensity exercise before starting the next workout. AMPK can increase GLUT4 expression through response elements in the bp895 promoter and transcription factors such as guanine nucleotide exchange factor (GEF) and myocyte enhancer factor. This study used the literature review method. Getting 102 journals into 45 journals because through the selection process. The conclusion of this study says that HIIT training can increase muscle oxidation, increase Interleukin-6 (IL-6) levels, and when compared to moderate intensity training, High intensity training is better for weight loss

Keywords

HIIT, GLTU4, IL-6, Glucose

Article Details

How to Cite
Prasetyo, Y. B., Putra, S. P., & Mandalawati, T. K. (2024). Effects Of High Intensity Interval Training On The Body. Kinestetik : Jurnal Ilmiah Pendidikan Jasmani, 8(4), 977–986. https://doi.org/10.33369/jk.v8i4.38612

References

  1. Ahmad, A. M. (2019). Moderate-intensity continuous training: Is it as good as high-intensity interval training for glycemic control in type 2 diabetes? Journal of Exercise Rehabilitation, 15(2), 327–333. https://doi.org/10.12965/jer.1836648.324
  2. Akhoundnia, K., Lamir, A. R., Khajeie, R., & Arazi, H. (2019). The effect of sport-specific High Intensity Interval Training on Ghrelin levels and body composition in youth wrestlers. Annals of Applied Sport Science, 7(1), 11–17. https://doi.org/10.29252/aassjournal.7.1.11
  3. Antunes, B. M., Rossi, F. E., Oyama, L. M., Rosa-Neto, J. C., & Lira, F. S. (2020). Exercise intensity and physical fitness modulate lipoproteins profile during acute aerobic exercise session. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-61039-6
  4. Astorino, T. A., Edmunds, R. M., Clark, A., King, L., Gallant, R. A., Namm, S., Fischer, A., & Wood, K. M. (2017). High-Intensity Interval Training Increases Cardiac Output and V-O2max. Medicine and Science in Sports and Exercise, 49(2), 265–273. https://doi.org/10.1249/MSS.0000000000001099
  5. Batacan, R. B., Duncan, M. J., Dalbo, V. J., Tucker, P. S., & Fenning, A. S. (2017). Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. British Journal of Sports Medicine, 51(6), 494–503. https://doi.org/10.1136/bjsports-2015-095841
  6. Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2017). High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia, 60(1), 7–23. https://doi.org/10.1007/s00125-016-4106-1
  7. de Oliveira Teles, G., da Silva, C. S., Rezende, V. R., & Rebelo, A. C. S. (2022). Acute Effects of High-Intensity Interval Training on Diabetes Mellitus: A Systematic Review. International Journal of Environmental Research and Public Health, 19(12). https://doi.org/10.3390/ijerph19127049
  8. Ellulu, M. S., Patimah, I., Khaza, H., Rahmat, A., Abed, Y., & Sci, A. M. (2016). Obesity and Inflammation : The Linking Mechanism and the Complications. Archives of Medical Science, 851–863.
  9. Gallo-Villegas, J., Aristizabal, J. C., Estrada, M., Valbuena, L. H., Narvaez-Sanchez, R., Osorio, J., Aguirre-Acevedo, D. C., & Calderón, J. C. (2018). Efficacy of high-intensity, low-volume interval training compared to continuous aerobic training on insulin resistance, skeletal muscle structure and function in adults with metabolic syndrome: Study protocol for a randomized controlled clinical trial (In. Trials, 19(1), 1–10. https://doi.org/10.1186/s13063-018-2541-7
  10. Granata, C., Oliveira, R. S. F., Little, J. P., Renner, K., & Bishop, D. J. (2016). Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB Journal, 30(10), 3413–3423. https://doi.org/10.1096/fj.201500100R
  11. Hadiono, M., & Wara Kushartanti, B. M. (2019). High Intensity Interval Training (HIIT) and Moderate Intensity Training (MIT) Against TNF-α and IL-6 levels In Rats. 7(Icssh 2018), 87–90. https://doi.org/10.2991/icssh-18.2019.21
  12. Hadiono, Andri Arif Kustiawan, Bimo Alexander, Ajeng Nur Khoirunnisa. (2023). Effect of HIIT and MIT on TNF-α levels and blood profile for obesity therapy. Fizjoterapia Polska, 23(2), 158-161. DOI: https://doi.org/10.56984/8ZG0DF1BA
  13. Hammond, K. M., Sale, C., Fraser, W., Tang, J., Shepherd, S. O., Strauss, J. A., Close, G. L., Cocks, M., Louis, J., Pugh, J., Stewart, C., Sharples, A. P., & Morton, J. P. (2019). Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation. Journal of Physiology, 597(18), 4779–4796. https://doi.org/10.1113/JP278209
  14. Hidayat, A., & Suroto. (2016). Hubungan antara Status Gizi dan Aktivitas Fisik dengan Tingkat Kebugaran Jasmani Siswa. Jurnal Pendidikan Olahraga Dan Kesehatan, 04(02), 516–521.
  15. Holland, W. L., Adams, A. C., Brozinick, J. T., Bui, H. H., Kusminski, C. M., Bauer, S. M., Wade, M., Singhal, E., Cheng, C. C., Volk, K., Kuo, M., & Gordillo, R. (2014). Expenditure and Insulin Action in Mice. Elsevier Inc, 17(5), 790–797. https://doi.org/10.1016/j.cmet.2013.03.019.An
  16. Hughes, I. L., & Higgins, T. (2019). Six Weeks High Intensity Interval Training (HIIT) Improves a Variety of Different Diabetes Mellitus Type 2 Risk Markers. International Journal of Physical Medicine & Rehabilitation, 7(1), 1–10. https://doi.org/10.4172/2329-9096.1000503
  17. Jandova, T., Buendía-Romero, A., Polanska, H., Hola, V., Rihova, M., Vetrovsky, T., Courel-Ibáñez, J., & Steffl, M. (2021). Long-term effect of exercise on Irisin blood levels—systematic review and meta-analysis. Healthcare (Switzerland), 9(11), 1–19. https://doi.org/10.3390/healthcare9111438
  18. Kaspar, F., Jelinek, H. F., Perkins, S., Al-Aubaidy, H. A., Dejong, B., & Butkowski, E. (2016). Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study. Mediators of Inflammation, 2016. https://doi.org/10.1155/2016/5474837
  19. Khammassi, M., Ouerghi, N., Hadj-Taieb, S., Feki, M., Thivel, D., & Bouassida, A. (2018). Impact of a 12-week high-intensity interval training without caloric restriction on body composition and lipid profile in sedentary healthy overweight/obese youth. Journal of Exercise Rehabilitation, 14(1), 118–125. https://doi.org/10.12965/jer.1835124.562
  20. Liu, J. xin, Zhu, L., Li, P. jun, Li, N., & Xu, Y. bing. (2019). Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging Clinical and Experimental Research, 31(5), 575–593. https://doi.org/10.1007/s40520-018-1012-z
  21. Ouerghi, N., Ben Fradj, M. K., Bezrati, I., Khammassi, M., Feki, M., Kaabachi, N., & Bouassida, A. (2017). Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biology of Sport, 34(4), 385–392. https://doi.org/10.5114/biolsport.2017.69827
  22. Recinella, L., Orlando, G., Ferrante, C., Chiavaroli, A., Brunetti, L., & Leone, S. (2020). Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Frontiers in Physiology, 11(October), 1–32. https://doi.org/10.3389/fphys.2020.578966
  23. RezkAllah, S. S., & Takla, M. K. (2019). Effects of different dosages of interval training on glycemic control in people with prediabetes: A randomized controlled trial. Diabetes Spectrum, 32(2), 125–131. https://doi.org/10.2337/ds18-0024
  24. Sarkar, S., Debnath, M., Das, M., Bandyopadhyay, A., Dey, S. K., & Datta, G. (2021). Effect of high intensity interval training on antioxidant status, inflammatory response and muscle damage indices in endurance team male players. Apunts Sports Medicine, 56(210). https://doi.org/10.1016/j.apunsm.2021.100352
  25. Shahouzehi, B., Masoumi-Ardakani, Y., Nazari-Robati, M., & Aminizadeh, S. (2023). The Effect of High-intensity Interval Training and L-carnitine on the Expression of Genes Involved in Lipid and Glucose Metabolism in the Liver of Wistar Rats. Brazilian Archives of Biology and Technology, 66, 1–11. https://doi.org/10.1590/1678-4324-2023220100
  26. Siddiqui, S. (2018). Obesity and diabetes: interrelationship. Advances in Obesity, Weight Management & Control, 8(2), 155–158. https://doi.org/10.15406/aowmc.2018.08.00233
  27. Smith-Ryan, A. E., Blue, M. N. M., Anderson, K. C., Hirsch, K. R., Allen, K. D., Huebner, J. L., Muehlbauer, M. J., Ilkayeva, O. R., Kraus, V. B., Kraus, W. E., Golightly, Y. M., & Huffman, K. M. (2020). Metabolic and physiological effects of high intensity interval training in patients with knee osteoarthritis: A pilot and feasibility study. Osteoarthritis and Cartilage Open, 2(4), 100083. https://doi.org/10.1016/j.ocarto.2020.100083
  28. Stephens, N. A., Brouwers, B., Eroshkin, A. M., Yi, F., Cornnell, H. H., Meyer, C., Goodpaster, B. H., Pratley, R. E., Smith, S. R., & Sparks, L. M. (2018). Exercise response variations in skeletal muscle PCR recovery rate and insulin sensitivity relate to muscle epigenomic profiles in individuals with type 2 diabetes. Diabetes Care, 41(10), 2245–2254. https://doi.org/10.2337/dc18-0296
  29. Timper, K., Denson, J. L., Steculorum, S. M., Heilinger, C., Engström-Ruud, L., Wunderlich, C. M., Rose-John, S., Wunderlich, F. T., & Brüning, J. C. (2017). IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Reports, 19(2), 267–280. https://doi.org/10.1016/j.celrep.2017.03.043
  30. Torma, F., Gombos, Z., Jokai, M., Takeda, M., Mimura, T., & Radak, Z. (2019). High intensity interval training and molecular adaptive response of skeletal muscle. Sports Medicine and Health Science, 1(1), 24–32. https://doi.org/10.1016/j.smhs.2019.08.003