Main Article Content
Abstract
ABSTRAK
Artikel ini membahas konsep termodinamika yang berlaku pada Lubang Hitam, yaitu hukum termodinamika pertama dan kedua. Hukum pertama termodinamika menghubungkan perubahan massa dengan perubahan entropi dan kerja, memungkinkan Lubang Hitam diperlakukan sebagai sistem termodinamika dengan suhu dan entropi. Hukum kedua termodinamika menyatakan bahwa entropi suatu sistem terisolasi dalam kesetimbangan termodinamika selalu meningkat atau tetap konstan, termasuk untuk Lubang Hitam. Metode penulisan yang digunakan dalam artikel ini melibatkan derivasi matematis untuk entropi Lubang Hitam, dengan menggabungkan hukum kedua termodinamika dan konsep termodinamika Lubang Hitam, di mana entropi dapat dinyatakan sebagai fungsi luas cakrawala peristiwa. Artikel ini menyoroti pentingnya konsep entropi dan termodinamika Lubang Hitam dalam memahami alam semesta, serta penerapannya di berbagai bidang sains.
Kata kunci—Lubang Hitam, Termodinamika, Entropi, Hukum pertama termodinamika, Hukum kedua termodinamika
ABSTRACT
This article delves into the concepts of thermodynamics that apply to Lubang Hitams, namely the first and second laws of thermodynamics. The first law of thermodynamics connects changes in mass with changes in entropy and work, allowing Lubang Hitams to be treated as thermodynamic systems with temperature and entropy. The second law of thermodynamics states that the entropy of an isolated system in thermodynamic equilibrium always increases or remains constant, including for Lubang Hitams. The writing approach employed in this article involves mathematical derivations for Lubang Hitam entropy, combining the second law of thermodynamics with the concept of Lubang Hitam thermodynamics, where entropy can be expressed as a function of the event horizon's surface area. This article highlights the significance of entropy and Lubang Hitam thermodynamics in understanding the universe, as well as their applications in various scientific fields.
Keywords—Lubang Hitam, Thermodynamics, Entropy, First law of thermodynamics, Second law of thermodynamics
Article Details
Copyright (c) 2023 Ruben Cornelius Siagian, Lulut Alfaris, Arip Nurahman, Eko Pramesti Sumarto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
• Creative Commons Attribution-ShareAlike (CC BY-SA)
Jurnal Kumparan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Alfaris L, Siagian RC, Sumarto EP. Study Review of the Speed of Light in Space-Time for STEM Student. Jurnal Penelitian Pendidikan IPA. 2023;9(2):509–19.
- Barceló C, Liberati S, Sonego S, Visser M. Black stars, not holes. Scientific American. 2009;301(4):38–45.
- Fryer C, Woosley S, Heger A. Pair-instability supernovae, gravity waves, and gamma-ray transients. The Astrophysical Journal. 2001;550(1):372.
- Planet B. A. Pendahuluan. ILMU DASAR ASTRONOMI. 2022;70.
- Ghosh A, Perez A. Black hole entropy and isolated horizons thermodynamics. Physical review letters. 2011;107(24):241301.
- Kubizňák D, Mann RB, Teo M. Black hole chemistry: thermodynamics with Lambda. Classical and Quantum Gravity. 2017;34(6):063001.
- Ruppeiner G. Thermodynamic black holes. Entropy. 2018;20(6):460.
- Boi L. Topological Quantum Field Theory and the Emergence of Physical Space–Time from Geometry. New Insights into the Interactions Between Geometry and Physics. Dalam: From Electrons to Elephants and Elections: Exploring the Role of Content and Context. Springer; 2022. hlm. 403–23.
- Jawad A, Fatima SR. Thermodynamic geometries analysis of charged black holes with barrow entropy. Nuclear Physics B. 2022;976:115697.
- Simovic F, Fusco D, Mann RB. Thermodynamics of de Sitter black holes with conformally coupled scalar fields. Journal of High Energy Physics. 2021;2021(2):1–19.
- Budiman Nasution, Ruben Cornelius Siagian, Arip Nurahman, Lulut Alfaris. EXPLORING THE INTERCONNECTEDNESS OF COSMOLOGICAL PARAMETERS AND OBSERVATIONS: INSIGHTS INTO THE PROPERTIES AND EVOLUTION OF THE UNIVERSE. SPEKTRA [Internet]. 29 April 2023 [dikutip 1 Mei 2023];8(1). Tersedia pada: https://journal.unj.ac.id/unj/index.php/spektra/article/view/34133
- Allori V. What is It Like to be a Relativistic GRW Theory? Or: Quantum Mechanics and Relativity, Still in Conflict After All These Years. Foundations of Physics. 2022;52(4):79.
- Bena I, Martinec EJ, Mathur SD, Warner NP. Snowmass White Paper: Micro-and Macro-Structure of Black Holes. arXiv preprint arXiv:220304981. 2022;
- Azizi A, Camblong H, Chakraborty A, Ordóñez C, Scully M. Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation. Physical Review D. 2021;104(8):084085.
- Hawking SW, Page DN. Thermodynamics of black holes in anti-de Sitter space. Communications in Mathematical Physics. 1983;87:577–88.
- Chandrasekhar S, Chandrasekhar S. Selected Papers, Volume 6: The Mathematical Theory of Black Holes and of Colliding Plane Waves. Vol. 6. University of Chicago Press; 1991.
- Cheung C, Liu J, Remmen GN. Entropy bounds on effective field theory from rotating dyonic black holes. Physical Review D. 2019;100(4):046003.
- Yi-Fang C. Possible decrease of entropy due to internal interactions in isolated systems. Apeiron. 1997;4(4):97–9.
- Bekenstein JD. Black-hole thermodynamics. Physics Today. 1980;33(1):24–31.
- Hawking SW. Black holes and thermodynamics. Physical Review D. 1976;13(2):191.
- Wald RM. The thermodynamics of black holes. Living reviews in relativity. 2001;4:1–44.
- Chang YF. Entropy Decrease in Isolated Systems: Theory, Fact and Tests: Physics. International Journal of Fundamental Physical Sciences. 2020;10(2):16–26.
- MISBAH M. Teori Relativitas. 2023;
- Dougherty J, Callender C. Black hole thermodynamics: More than an analogy? 2016;
- Hooft G. On the quantum structure of a black hole. Nuclear Physics B. 1985;256:727–45.
- Guo S, Pan S, Li X, Shi L, Zhang P, Guo P, dkk. A system on chip-based real-time tracking system for amphibious spherical robots. International Journal of Advanced Robotic Systems. 2017;14(4):1729881417716559.
- Auffinger J. Primordial black hole constraints with Hawking radiation—a review. Progress in Particle and Nuclear Physics. 2023;104040.
- Prester PD. Alpha’-corrections and heterotic black holes. arXiv preprint arXiv:10011452. 2010;
- Sinaga GHD, Panjaitan MB, Siagian RC, Siahaan KWA. MEMAHAMI INDAHNYA SEMESTA DENGAN DASAR TEORI KOSMOLOGI DAN ASTRONOMI FISIKA SERTA SEJARAHNYA [Internet]. Penerbit Widina; Tersedia pada: https://books.google.co.id/books?id=BKtwEAAAQBAJ
References
Alfaris L, Siagian RC, Sumarto EP. Study Review of the Speed of Light in Space-Time for STEM Student. Jurnal Penelitian Pendidikan IPA. 2023;9(2):509–19.
Barceló C, Liberati S, Sonego S, Visser M. Black stars, not holes. Scientific American. 2009;301(4):38–45.
Fryer C, Woosley S, Heger A. Pair-instability supernovae, gravity waves, and gamma-ray transients. The Astrophysical Journal. 2001;550(1):372.
Planet B. A. Pendahuluan. ILMU DASAR ASTRONOMI. 2022;70.
Ghosh A, Perez A. Black hole entropy and isolated horizons thermodynamics. Physical review letters. 2011;107(24):241301.
Kubizňák D, Mann RB, Teo M. Black hole chemistry: thermodynamics with Lambda. Classical and Quantum Gravity. 2017;34(6):063001.
Ruppeiner G. Thermodynamic black holes. Entropy. 2018;20(6):460.
Boi L. Topological Quantum Field Theory and the Emergence of Physical Space–Time from Geometry. New Insights into the Interactions Between Geometry and Physics. Dalam: From Electrons to Elephants and Elections: Exploring the Role of Content and Context. Springer; 2022. hlm. 403–23.
Jawad A, Fatima SR. Thermodynamic geometries analysis of charged black holes with barrow entropy. Nuclear Physics B. 2022;976:115697.
Simovic F, Fusco D, Mann RB. Thermodynamics of de Sitter black holes with conformally coupled scalar fields. Journal of High Energy Physics. 2021;2021(2):1–19.
Budiman Nasution, Ruben Cornelius Siagian, Arip Nurahman, Lulut Alfaris. EXPLORING THE INTERCONNECTEDNESS OF COSMOLOGICAL PARAMETERS AND OBSERVATIONS: INSIGHTS INTO THE PROPERTIES AND EVOLUTION OF THE UNIVERSE. SPEKTRA [Internet]. 29 April 2023 [dikutip 1 Mei 2023];8(1). Tersedia pada: https://journal.unj.ac.id/unj/index.php/spektra/article/view/34133
Allori V. What is It Like to be a Relativistic GRW Theory? Or: Quantum Mechanics and Relativity, Still in Conflict After All These Years. Foundations of Physics. 2022;52(4):79.
Bena I, Martinec EJ, Mathur SD, Warner NP. Snowmass White Paper: Micro-and Macro-Structure of Black Holes. arXiv preprint arXiv:220304981. 2022;
Azizi A, Camblong H, Chakraborty A, Ordóñez C, Scully M. Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation. Physical Review D. 2021;104(8):084085.
Hawking SW, Page DN. Thermodynamics of black holes in anti-de Sitter space. Communications in Mathematical Physics. 1983;87:577–88.
Chandrasekhar S, Chandrasekhar S. Selected Papers, Volume 6: The Mathematical Theory of Black Holes and of Colliding Plane Waves. Vol. 6. University of Chicago Press; 1991.
Cheung C, Liu J, Remmen GN. Entropy bounds on effective field theory from rotating dyonic black holes. Physical Review D. 2019;100(4):046003.
Yi-Fang C. Possible decrease of entropy due to internal interactions in isolated systems. Apeiron. 1997;4(4):97–9.
Bekenstein JD. Black-hole thermodynamics. Physics Today. 1980;33(1):24–31.
Hawking SW. Black holes and thermodynamics. Physical Review D. 1976;13(2):191.
Wald RM. The thermodynamics of black holes. Living reviews in relativity. 2001;4:1–44.
Chang YF. Entropy Decrease in Isolated Systems: Theory, Fact and Tests: Physics. International Journal of Fundamental Physical Sciences. 2020;10(2):16–26.
MISBAH M. Teori Relativitas. 2023;
Dougherty J, Callender C. Black hole thermodynamics: More than an analogy? 2016;
Hooft G. On the quantum structure of a black hole. Nuclear Physics B. 1985;256:727–45.
Guo S, Pan S, Li X, Shi L, Zhang P, Guo P, dkk. A system on chip-based real-time tracking system for amphibious spherical robots. International Journal of Advanced Robotic Systems. 2017;14(4):1729881417716559.
Auffinger J. Primordial black hole constraints with Hawking radiation—a review. Progress in Particle and Nuclear Physics. 2023;104040.
Prester PD. Alpha’-corrections and heterotic black holes. arXiv preprint arXiv:10011452. 2010;
Sinaga GHD, Panjaitan MB, Siagian RC, Siahaan KWA. MEMAHAMI INDAHNYA SEMESTA DENGAN DASAR TEORI KOSMOLOGI DAN ASTRONOMI FISIKA SERTA SEJARAHNYA [Internet]. Penerbit Widina; Tersedia pada: https://books.google.co.id/books?id=BKtwEAAAQBAJ