Main Article Content

Abstract

ABSTRAK


 


Metode geomagnetik digunakan dalam penelitian ini untuk membuat model 2D struktur bawah permukaan di kawasan Dempo Magnet kota Pagar Alam berdasarkan sebaran anomali. Terdapat 48 titik pengukuran pada lokasi penelitian. Pengolahan data dilakukan dengan membuat peta anomali magnetik total. Koreksi diurnal dan koreksi international geomagnetic reference field (IGRF) dilakukan untuk mendapatkan nilai anomali magnetik total. Data magnetik tersebut kemudian diolah untuk memisahkan anomali regional dan anomali residual menggunakan bandpass filter, kemudian dilakukan transformasi reduksi ke kutub, dan pemodelan 2D menggunakan metode forward modeling. Hasil analisis kisaran nilai anomali magnet di kawasan magnet Dempo kota Pagar Alam diperoleh nilai anomali magnet tertinggi sebesar 781,8 nT, sedangkan anomali magnet terendah sebesar -796,6 nt. Hasil pemodelan 2D pada data magnetik diperoleh 4 lapisan batuan bawah permukaan dengan kedalaman sekitar 165 meter, dimana lapisan batuan pertama berupa breksi gunung api, lapisan batuan kedua berupa endapan piroklastik, lapisan batuan ketiga berupa basal, dan lapisan batuan terakhir. adalah gabro.


 


Kata Kunci: Metode Magnetik, Intensitas Anomali Medan, Pemodelan 2D, Struktur Bawah Permukaan


 


ABSTRACT


 


The geomagnetic method was used in this research to create a 2D model of subsurface structures in the Dempo Magnet area of ​​Pagar Alam city based on the distribution of anomalies.  There were 48 measurement points at the researched location.  Data processing was carried out by creating a total magnetic anomaly map.  Diurnal correction and international geomagnetic reference field (IGRF) correction were carried out to obtain total magnetic anomaly values.  The magnetic data was then processed to separate regional anomalies and residual anomalies used a bandpass filter, then a reduction transformation to the poles was carried out, and 2D modeling used the forward modeling method.  The results of the analysis of the range of magnetic anomaly values ​​in the Dempo magnet area of ​​Pagar Alam city obtained the highest magnetic anomaly valued of 781, 8 nT, while the lowest magnetic anomaly was -796, 6 nt.  The results of 2D modeling on magnetic data obtained 4 subsurface rock layers with a depth of around 165 meters, where the first rock layer was volcanic breccia, the second rock layer was pyroclastic sediment, the third rock layer was basalt, and the last rock layer was gabbro.


 


Keywords: Magnetic method, Field anomaly intensity, 2D modeling, Subsurface structures

Keywords

Magnetic method Field anomaly intensity 2D modeling Subsurface structures

Article Details

How to Cite
Adrianto, F. A., Refrizon, & Arif Ismul Hadi. (2023). Model 2D of Subsurface Structures in the Dempo Magnetic Area of Pagar Alam City Using Geomagnetic Method. Jurnal Kumparan Fisika, 6(3), 167–176. https://doi.org/10.33369/jkf.6.3.167-176

References

  1. https://vsi.esdm.go.id/index.php/gunungapi/data-dasar-gunungapi/504-g-dempo?start=1 . ESDM. G. Dempo - Geologi; 2014.
  2. Sahputra R, Ginting M, Putra Ujang, and Lubis Ashar Muda. A prior study of Dempo Volcano deformation using global positioning system (GPS) surveys. Dans: AIP Conference Proceedings. 2021.
  3. Santosa B J. Magnetic Method Interpretation to Determine Subsurface Structure Around Kelud Volcano. Indian Journal of Applied Research. 2013;3(5):328 31.
  4. Zulfitra M, Lantu, and Syamsuddin. Identifikasi Sebaran Mineral Sulfida (Pirit) Menggunakan Metode Geomagnet di Daerah Libureng Kabupaten Bone. Jurnal Geocelebes. 2018;Vol. 2. No 1:36 41.
  5. Afandi A, Mayanto S, and Rachmasya A. Identifikasi Reservoar Daerah Panas bumi dengan Metode Geomagnetik Daerah Blawan Kecamatan Sempol Kabupaten Bondowoso. Neutrino. 2013;6(1):1 10.
  6. Rusita S, Siregar S S, and Sota I. Identifikasi Sebaran Bijih Besi Dengan Metode Geomagnet Di Daerah Pemalongan, Bajuin Tanah Laut. Jurnal Fisika FLUX. 2016;13(1):49 59.
  7. Blakely, Richard J. Potential Theory In Gravity and Magnetic Applications. Cambridge: Cambridge University Press; 1996.
  8. Man-Ho Han S W S. Induced Polarization imaging applied to exploration for low-sulfidation epithermal AuAg deposits, Seongsan mineralized district, South Korea. Journal Geophysics and Engineering. 2016;13(5):817 23.
  9. Ikramsyah A C L, Ismail N, Rusydy I, and Jaman A P. Delineasi area prospek emas berdasarkan anomali medan magnetik total reduksi ke kutub. Journal of Aceh Physics Society. 2018;7(3):122 6.
  10. Holden E J. Identifying structural complexity in aeromagnetic data: An image analysis approach to greenfields gold exploration. Ore Geol. 2012;46:47 59.
  11. Utama W, Warnana D D, Hilyah A, Bahri S, Syaifuddin F, and Farida H. Eksplorasi Geomagnetik Untuk Penentuan Keberadaan Pipa Air Di Bawah Permukaan Bumi. Jurnal Geosaintek. 2016;2(3):157 63.
  12. Nurhidayah A, Wahyono S C, and Siregar S S. Interpretasi Bawah Permukaan Daerah Tambang Batuan Andesit Menggunakan Metode Magnetik Di Desa Awang Bangkal Kalimantan Selatan. Jurnal Fisika Flux. 2019;16(2):1 7.
  13. Broto S, and Putranto T T. Aplikasi Metode Geomagnet Dalam Eksplorasi Panas BumiJur. Jurnal Teknik. 2012;
  14. Ismail. Metode Geomagnetik. Surakarta : FMIPA Univeritas Sebelas Maret; 2013.
  15. Rohyati E, Purwanto C, Arman Y, and Apriansyah. Interprestasi Data Anomali Medan Magnetik Total Transformasi Reduksi ke Kutub di Laut Flores. Prisma Fisika. 2019;7(3):158 61.
  16. Fikar M, Hamimu L, and Manan A. Pemodelan 2D Data Magnetik Menggunakan Transformasi RTP untuk Pendugaan Sesar di Daerah Kasihan, Pacitan, Jawa Timu. Jurnal Rekayasa Geofisika Indoensia. 2019;1:33 42.
  17. Deniyatno. Pemodelan kedepan (Forward Modeling) 2 Dimensi Data magnetik untuk identifikasi biji besi di lokasi X, Provinsi Sumatra Barat. Jurnal Aplikasi Fisika. 2010;6(2):76 82.
  18. Simbolon P, Refrizon, and Sugianto N. Peta Sebaran Intensitas Anomali Magnetik Di Daerah Prospek Geothermal Kepahiang Berdasarkan Survei Metode Geomagnet. Newton-Maxwell Journal. 2020;1(1):7 12.