Main Article Content
Abstract
Pemantauan kualitas air limbah secara real-time merupakan langkah krusial dalam pengelolaan lingkungan, terutama dalam skala laboratorium yang menghasilkan limbah dengan karakteristik spesifik. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem pemantauan kualitas air berbasis Internet of Things (IoT), yang mampu mendeteksi parameter pH, suhu, kekeruhan, dan konduktivitas secara kontinu. Sistem ini menggunakan berbagai sensor terintegrasi dengan mikrokontroler Arduino, memungkinkan pengumpulan data yang akurat dan efisien. Data yang diperoleh dianalisis untuk menilai status air limbah berdasarkan parameter standar yang relevan. Hasil penelitian menunjukkan bahwa nilai parameter kualitas air bervariasi tergantung pada jenis aktivitas laboratorium. Nilai pH berkisar antara 6,8 hingga 8,6, suhu antara 25,9°C hingga 34°C, kekeruhan mencapai 72 NTU, dan konduktivitas hingga 1300 µS/cm. Sistem pemantauan yang dirancang tidak hanya mampu mengidentifikasi air limbah yang tercemar, tetapi juga mengirimkan peringatan melalui jaringan GSM apabila parameter melebihi ambang batas. Temuan ini menunjukkan efektivitas sistem IoT dalam pemantauan kualitas air limbah, mengurangi ketergantungan pada metode konvensional yang memakan waktu dan sumber daya. Penelitian ini memberikan kontribusi signifikan terhadap upaya pengelolaan limbah laboratorium yang lebih berkelanjutan. Sistem yang dikembangkan dapat diadaptasi untuk berbagai kebutuhan pemantauan kualitas air, baik di laboratorium pendidikan maupun fasilitas skala kecil lainnya. Integrasi teknologi IoT ini diharapkan menjadi langkah maju dalam meningkatkan efektivitas dan efisiensi pengelolaan limbah secara global.
Kata kunci — Internet of Things (IoT), Pemantauan Kualitas Air, Limbah Laboratorium, Sensor, Water Quality
Index (WQI)
Keywords
Article Details
Copyright (c) 2024 Alif Lombardoaji Sidiq, Kemala Dewi, Budiono Joko Nugroho, Pipit Skriptianata Putra Pranida

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
• Creative Commons Attribution-ShareAlike (CC BY-SA)
Jurnal Kumparan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Arumugham T, Kaleekkal NJ, Gopal S, Nambikkattu J, K R, Aboulella AM, et al. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review. J Environ Manage. 2021 Sep;293:112925.
- Jan F, Min-Allah N, Saeed S, Iqbal SZ, Ahmed R. IoT-Based Solutions to Monitor Water Level, Leakage, and Motor Control for Smart Water Tanks. Water (Basel). 2022 Jan 20;14(3):309.
- Ishaq A, Said MIM, Azman S, Abdulwahab MF, Alfa MI. Impact, Mitigation Strategies, and Future Possibilities of Nigerian Municipal Solid Waste Leachate Management Practices: A Review. Nigerian Journal of Technological Development. 2022 Sep 23;19(3):181–94.
- Garcia-Rodriguez O, Mousset E, Olvera-Vargas H, Lefebvre O. Electrochemical treatment of highly concentrated wastewater: A review of experimental and modeling approaches from lab- to full-scale. Crit Rev Environ Sci Technol. 2022 Jan 17;52(2):240–309.
- Yaroshenko I, Kirsanov D, Marjanovic M, Lieberzeit PA, Korostynska O, Mason A, et al. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors. 2020 Jun 17;20(12):3432.
- Jan F, Min-Allah N, Düştegör D. IoT Based Smart Water Quality Monitoring: Recent Techniques, Trends and Challenges for Domestic Applications. Water (Basel). 2021 Jun 22;13(13):1729.
- Hu K, Zhao QL, Chen W, Wang W, Han F, Shen XH. Appropriate technologies for upgrading wastewater treatment plants: methods review and case studies in China. Journal of Environmental Science and Health, Part A. 2018 Dec 6;53(14):1207–20.
- Laskar N, Kumar U. Application of low‐cost, eco‐friendly adsorbents for the removal of dye contaminants from wastewater: Current developments and adsorption technology. Environmental Quality Management. 2022 Sep 29;32(1):209–21.
- Wu S, Kuschk P, Brix H, Vymazal J, Dong R. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Res. 2014 Jun;57:40–55.
- Sharma B, Koundal D. Cattle health monitoring system using wireless sensor network: a survey from innovation perspective. IET Wireless Sensor Systems. 2018 Aug;8(4):143–51.
- Prapti DR, Mohamed Shariff AR, Che Man H, Ramli NM, Perumal T, Shariff M. Internet of Things (IoT)‐based aquaculture: An overview of IoT application on water quality monitoring. Rev Aquac. 2022 Mar 19;14(2):979–92.
- Malche T, Maheshwary P. Internet of Things (IoT) Based Water Level Monitoring System for Smart Village. In 2017. p. 305–12.
- Akhter F, Siddiquei HR, Alahi MEE, Mukhopadhyay SC. Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming. Computers. 2021 Feb 27;10(3):26.
- Zulkifli CZ, Garfan S, Talal M, Alamoodi AH, Alamleh A, Ahmaro IYY, et al. IoT-Based Water Monitoring Systems: A Systematic Review. Water (Basel). 2022 Nov 10;14(22):3621.
- Das B, Jain PC. Real-time water quality monitoring system using Internet of Things. In: 2017 International Conference on Computer, Communications and Electronics (Comptelix). IEEE; 2017. p. 78–82.
- Mahbubur Rahman M, Bapery C, Jamal Hossain M, Hassan Z, Jamil Hossain G, Muzahidul Islam M. Internet of Things (IoT) Based Water Quality Monitoring System [Internet]. Vol. 2, International Journal of Multidisciplinary and Current Educational Research (IJMCER). 2020. Available from: www.ijmcer.com
- de Vlaming V, Connor V, DiGiorgio C, Bailey HC, Deanovic LA, Hinton DE. Application of whole effluent toxicity test procedures to ambient water quality assessment. Environ Toxicol Chem. 2000 Jan 1;19(1):42–62.
- Hasson D, Shemer H, Semiat R. Removal of scale-forming ions by a novel cation-exchange electrochemical system—A review. Desalination Water Treat. 2016 Oct;57(48–49):23147–61.
- Hakami MW, Alkhudhiri A, Al-Batty S, Zacharof MP, Maddy J, Hilal N. Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. Membranes (Basel). 2020 Sep 22;10(9):248.
- Rusydi AF. Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conf Ser Earth Environ Sci. 2018 Feb;118:012019.
References
Arumugham T, Kaleekkal NJ, Gopal S, Nambikkattu J, K R, Aboulella AM, et al. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review. J Environ Manage. 2021 Sep;293:112925.
Jan F, Min-Allah N, Saeed S, Iqbal SZ, Ahmed R. IoT-Based Solutions to Monitor Water Level, Leakage, and Motor Control for Smart Water Tanks. Water (Basel). 2022 Jan 20;14(3):309.
Ishaq A, Said MIM, Azman S, Abdulwahab MF, Alfa MI. Impact, Mitigation Strategies, and Future Possibilities of Nigerian Municipal Solid Waste Leachate Management Practices: A Review. Nigerian Journal of Technological Development. 2022 Sep 23;19(3):181–94.
Garcia-Rodriguez O, Mousset E, Olvera-Vargas H, Lefebvre O. Electrochemical treatment of highly concentrated wastewater: A review of experimental and modeling approaches from lab- to full-scale. Crit Rev Environ Sci Technol. 2022 Jan 17;52(2):240–309.
Yaroshenko I, Kirsanov D, Marjanovic M, Lieberzeit PA, Korostynska O, Mason A, et al. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors. 2020 Jun 17;20(12):3432.
Jan F, Min-Allah N, Düştegör D. IoT Based Smart Water Quality Monitoring: Recent Techniques, Trends and Challenges for Domestic Applications. Water (Basel). 2021 Jun 22;13(13):1729.
Hu K, Zhao QL, Chen W, Wang W, Han F, Shen XH. Appropriate technologies for upgrading wastewater treatment plants: methods review and case studies in China. Journal of Environmental Science and Health, Part A. 2018 Dec 6;53(14):1207–20.
Laskar N, Kumar U. Application of low‐cost, eco‐friendly adsorbents for the removal of dye contaminants from wastewater: Current developments and adsorption technology. Environmental Quality Management. 2022 Sep 29;32(1):209–21.
Wu S, Kuschk P, Brix H, Vymazal J, Dong R. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Res. 2014 Jun;57:40–55.
Sharma B, Koundal D. Cattle health monitoring system using wireless sensor network: a survey from innovation perspective. IET Wireless Sensor Systems. 2018 Aug;8(4):143–51.
Prapti DR, Mohamed Shariff AR, Che Man H, Ramli NM, Perumal T, Shariff M. Internet of Things (IoT)‐based aquaculture: An overview of IoT application on water quality monitoring. Rev Aquac. 2022 Mar 19;14(2):979–92.
Malche T, Maheshwary P. Internet of Things (IoT) Based Water Level Monitoring System for Smart Village. In 2017. p. 305–12.
Akhter F, Siddiquei HR, Alahi MEE, Mukhopadhyay SC. Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming. Computers. 2021 Feb 27;10(3):26.
Zulkifli CZ, Garfan S, Talal M, Alamoodi AH, Alamleh A, Ahmaro IYY, et al. IoT-Based Water Monitoring Systems: A Systematic Review. Water (Basel). 2022 Nov 10;14(22):3621.
Das B, Jain PC. Real-time water quality monitoring system using Internet of Things. In: 2017 International Conference on Computer, Communications and Electronics (Comptelix). IEEE; 2017. p. 78–82.
Mahbubur Rahman M, Bapery C, Jamal Hossain M, Hassan Z, Jamil Hossain G, Muzahidul Islam M. Internet of Things (IoT) Based Water Quality Monitoring System [Internet]. Vol. 2, International Journal of Multidisciplinary and Current Educational Research (IJMCER). 2020. Available from: www.ijmcer.com
de Vlaming V, Connor V, DiGiorgio C, Bailey HC, Deanovic LA, Hinton DE. Application of whole effluent toxicity test procedures to ambient water quality assessment. Environ Toxicol Chem. 2000 Jan 1;19(1):42–62.
Hasson D, Shemer H, Semiat R. Removal of scale-forming ions by a novel cation-exchange electrochemical system—A review. Desalination Water Treat. 2016 Oct;57(48–49):23147–61.
Hakami MW, Alkhudhiri A, Al-Batty S, Zacharof MP, Maddy J, Hilal N. Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. Membranes (Basel). 2020 Sep 22;10(9):248.
Rusydi AF. Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conf Ser Earth Environ Sci. 2018 Feb;118:012019.