Main Article Content
Abstract
ABSTRAK
Baterai ion litium adalah jenis baterai isi ulang yang memiliki kapasitas tinggi, potensi elektrokimia yang baik, dan daya tahan yang kuat. Perkembangan LiFePO4 sebagai material katoda baterai ion litium semakin meningkat dengan adanya beberapa teknik tambahan dalam proses sintesis untuk meningkatkan performa seperti teknik pelapisan dan penyisipan atom. Hal tersebut mempengaruhi volume kristal, serta sifat elektrokimia material berbasis LiFePO4. Metode pelapisan yang menunjukkan peningkatan nilai kapasitansi material berbasis LiFePO4. Sedangkan pada metode penyisipan atom, beberapa penelitian menggunakan atom Ce, Ru, Co, Na, Si, Mn, Zn dan In untuk disisipkan di atom Fe, Li, atau P pada material berbasis LiFePO4. Hasil yang diperoleh dari beberapa penelitian tentang sintesis material katoda LiFePO4 menunjukkan adanya peningkatan kapasitas discharging dan peningkatan volume kristal olivine, sehingga teknik pelapisan dan penyisipan ini dapat digunakan untuk peningkatan performa elektrokimia.
Kata kunci: LiFePO4, Pelapisan, Penyisipan, Volume Kristal, Kapasitansi
ABSTRACT
Lithium-ion batteries are a type of rechargeable battery that has high capacity, good electrochemical potential, and strong durability. The development of LiFePO4 as a cathode material for lithium-ion batteries has been increasing with the addition of several techniques in the synthesis process to enhance performance, such as coating and atom insertion techniques. These techniques affect the crystal volume and the electrochemical properties of LiFePO4-based materials. Coating methods have shown improvements in the capacitance values of LiFePO4-based materials. Meanwhile, in atom insertion methods, some studies have used Ce, Ru, Co, Na, Si, Mn, Zn, and In atoms to be inserted into Fe, Li, or P atoms in LiFePO4-based materials. Results from several studies on the synthesis of LiFePO4 cathode materials have shown an increase in discharge capacity and an increase in the volume of olivine crystals, indicating that coating and insertion techniques can be used to improve electrochemical performance.
Keywords: LiFePO4, Doping, Coating, Crystal Volume, Capacity
Keywords
Article Details
Copyright (c) 2024 Sahara Hamas Intifadhah, Husna Syaima

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
• Creative Commons Attribution-ShareAlike (CC BY-SA)
Jurnal Kumparan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Yoshino A. Development of the lithium-ion battery and recent technological trends. Lithium-Ion Batteries. 2014;1–20. doi:10.1016/b978-0-444-59513-3.00001-7
- Satyavani TVSL, Srinivas Kumar A, Subba Rao PSV. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A Review. Engineering Science and Technology, an International Journal. 2016 Mar;19(1):178–88. doi:10.1016/j.jestch.2015.06.002
- Wang J, Gu Y-J, Kong W-L, Liu H-Q, Chen Y-B, Liu W. Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4. Solid State Ionics. 2018 Dec;327:11–7. doi:10.1016/j.ssi.2018.10.015
- Zhao J-W, Zhao S-X, Wu X, Cheng H-M, Nan C-W. The double role of silicon in improving the rate performance of LiFePO4 cathode materials. Journal of Alloys and Compounds. 2017 Mar;699:849–55. doi:10.1016/j.jallcom.2016.12.430
- Shalaby MS, Alziyadi MO, Gamal H, Hamdy S. Solid-state lithium-ion battery: The key components enhance the performance and efficiency of the anode, cathode, and solid electrolytes. Journal of Alloys and Compounds. 2023 Dec;969:172318. doi:10.1016/j.jallcom.2023.172318
- Bondarde MP, Jain R, Sohn JS, Lokhande KD, Bhakare MA, Dhumal PS, et al. Carbon-based anode materials for lithium-ion batteries. Lithium-Sulfur Batteries. 2022;521–45. doi:10.1016/b978-0-323-91934-0.00004-1
- Chaudhary N, Khanuja M. Electrochemistry—concepts and methodologies. Electrochemical Sensors. 2022;31–50. doi:10.1016/b978-0-12-823148-7.00002-7
- Liu J, Wang S, He J, Liang K, Li J, Huang X, et al. Based on N, F, and p co-doping biomass carbon to construct 3D porous carbon coated LiFePO4 for preparing lithium-ion batteries. Journal of Industrial and Engineering Chemistry. 2024 Mar; doi:10.1016/j.jiec.2024.03.023
- Ahaliabadeh Z, Kong X, Fedorovskaya E, Kallio T. Extensive comparison of doping and coating strategies for NI-rich positive electrode materials. Journal of Power Sources. 2022 Aug;540:231633. doi:10.1016/j.jpowsour.2022.231633
- Wang C, Yuan X, Tan H, Jian S, Ma Z, Zhao J, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance. Coatings. 2021 Sept 18;11(9):1137. doi:10.3390/coatings11091137
- Gao Y, Xiong K, Zhang H, Zhu B. Effect of RU doping on the properties of lifepo4/c cathode materials for lithium-ion batteries. ACS Omega. 2021 May 25;6(22):14122–9. doi:10.1021/acsomega.1c00595
- Chen X, Li Y, Wang J. Enhanced electrochemical performance of LiFePO4 originating from the synergistic effect of zno and C co-modification. Nanomaterials. 2020 Dec 23;11(1):12. doi:10.3390/nano11010012
- Jugović D, Uskoković D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders. Journal of Power Sources. 2009 May;190(2):538–44. doi:10.1016/j.jpowsour.2009.01.074
- Shi Q, Xue L, Wei Z, Liu F, Du X, DesMarteau DD. Improvement in LiFePO4–Li Battery performance via poly(perfluoroalkylsulfonyl)imide (PFSI) based Ionene Composite Binder. Journal of Materials Chemistry A. 2013;1(47):15016. doi:10.1039/c3ta13364h
- Liu Y, Qin W, Zhang D, Feng L, Wu L. Effect of na+ in situ doping on lifepo4/C cathode material for lithium-ion batteries. Progress in Natural Science: Materials International. 2021 Feb;31(1):14–8. doi:10.1016/j.pnsc.2020.10.006
- Shaikh SF, Ubaidullah M, Mane RS, Al-Enizi AM. Types, synthesis methods and applications of ferrites. Spinel Ferrite Nanostructures for Energy Storage Devices. 2020;51–82. doi:10.1016/b978-0-12-819237-5.00004-3
- Zhao N, Li Y, Zhi X, Wang L, Zhao X, Wang Y, et al. Effect of Ce3+ doping on the properties of LiFePO4 cathode material. Journal of Rare Earths. 2016 Feb;34(2):174–80. doi:10.1016/s1002-0721(16)60011-x
- Cech O, Thomas JE, Sedlarikova M, Fedorkova A, Vondrak J, Moreno MS, et al. Performance improvement on LiFePO4/C composite cathode for lithium-ion batteries. Solid State Sciences. 2013 Jun;20:110–4. doi:10.1016/j.solidstatesciences.2013.03.017
- Prihandoko B, Zainuri M, Kirana N, Priyono S, Nuroniah I. Synthesis and characterization of active cathode material of LIFESIXP1-XO4/C with variation of doping si ions. Materials Today: Proceedings. 2019;13:59–64. doi:10.1016/j.matpr.2019.03.187
- Zainuri M, Triwikantoro, Zahra PA. Active materials lifesixp1-xo4/c as lithium ion battery cathode with doping variations si ions (0≤x≤0,06). Key Engineering Materials. 2020 Aug;860:75–80. doi:10.4028/www.scientific.net/kem.860.75
- Yi D, Cui X, Li N, Zhang L, Yang D. Enhancement of electrochemical performance of lifepo4@c by GA coating. ACS Omega. 2020 Apr 21;5(17):9752–8. doi:10.1021/acsomega.9b04165
- Kim S, Kim U, Kim J, Cho W. Synthesis of porous lifepo4 cathode material by citrate process for lithium ion battery. Journal of the Ceramic Society of Japan. 2016;124(2):145–9. doi:10.2109/jcersj2.15212
- Firdausi A, Latif C, Nihlatunnur, Prihandoko B, Zainuri M, Pratapa S. Electrical characteristics of natural ironstone-derived LiFe0.99Cu0.01PO4 and life0.98cu0.02po4 powders. AIP Conference Proceedings. 2020; doi:10.1063/5.0015421
- Pattankude B, Balwan A. Review on Coating Process. International Research Journal of Engineering and Technology. 2019 Mar 6;(3):7980-7984
- Fotovvati B, Namdari N, Dehghanghadikolaei A. On coating techniques for Surface Protection: A Review. Journal of Manufacturing and Materials Processing. 2019 Mar 25;3(1):28. doi:10.3390/jmmp3010028
- Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon. 2012 Aug;50(9):3247–66. doi:10.1016/j.carbon.2011.11.045
- Ramasubramanian B, Sundarrajan S, Chellappan V, Reddy MV, Ramakrishna S, Zaghib K. Recent development in carbon-lifepo4 cathodes for lithium-ion batteries: A mini review. Batteries. 2022 Sept 21;8(10):133. doi:10.3390/batteries8100133
- Zhang W-J. Structure and performance of Lifepo4 Cathode Materials: A Review. Journal of Power Sources. 2011 Mar;196(6):2962–70. doi:10.1016/j.jpowsour.2010.11.113
- Honggowiranto W, Kartini E, Sudaryanto, Rofika RN, Hutamaningtyas E, Subhan A, et al. Improving performance of Lifepo4by addition of Carbon Nano Tube for lithium ion battery. IOP Conference Series: Materials Science and Engineering. 2019 Nov 1;553(1):012060. doi:10.1088/1757-899x/553/1/012060
- Zhao Q, Yu Y, Ouyang Q, Hu M, Wang C, Ge J, et al. Surface modification of Lifepo4 by coatings for improving of lithium-ion battery properties. International Journal of Electrochemical Science. 2022 Nov;17(11):221142. doi:10.20964/2022.11.31
- Ghosh A, Mohammed OF, Bakr OM. Atomic-level doping of metal clusters. Accounts of Chemical Research. 2018 Nov 19;51(12):3094–103. doi:10.1021/acs.accounts.8b00412
- Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci. 2014;7(12):3857–86. doi:10.1039/c4ee01432d
- Lin W, Yang P, Zhou K, Wang L, Shen C. Indium doping: An effective route to optimize the electrochemical performance of Lifepo4 Cathode material. Solid State Ionics. 2023 Dec;403:116322. doi:10.1016/j.ssi.2023.116322
- Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu HQ. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications. 2006 Oct;8(10):1553–7. doi:10.1016/j.elecom.2006.07.014
- Chen W, Song F, Yang Y, Chen Q. MN-doped LiFePO4@C as a high-performance cathode material for lithium-ion batteries. Particuology. 2024 Jul;90:418–28. doi:10.1016/j.partic.2024.01.012
- Kumar. Comparison on study of lithium ion and lead acid charging and discharging characteristics. International Scientific Journal of Engineering and Management. 2023 Mar 28;02(03). doi:10.55041/isjem00163
- Wang C, Yuan X, Tan H, Jian S, Ma Z, Zhao J, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance. Coatings. 2021 Sept 18;11(9):1137. doi:10.3390/coatings11091137
References
Yoshino A. Development of the lithium-ion battery and recent technological trends. Lithium-Ion Batteries. 2014;1–20. doi:10.1016/b978-0-444-59513-3.00001-7
Satyavani TVSL, Srinivas Kumar A, Subba Rao PSV. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A Review. Engineering Science and Technology, an International Journal. 2016 Mar;19(1):178–88. doi:10.1016/j.jestch.2015.06.002
Wang J, Gu Y-J, Kong W-L, Liu H-Q, Chen Y-B, Liu W. Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4. Solid State Ionics. 2018 Dec;327:11–7. doi:10.1016/j.ssi.2018.10.015
Zhao J-W, Zhao S-X, Wu X, Cheng H-M, Nan C-W. The double role of silicon in improving the rate performance of LiFePO4 cathode materials. Journal of Alloys and Compounds. 2017 Mar;699:849–55. doi:10.1016/j.jallcom.2016.12.430
Shalaby MS, Alziyadi MO, Gamal H, Hamdy S. Solid-state lithium-ion battery: The key components enhance the performance and efficiency of the anode, cathode, and solid electrolytes. Journal of Alloys and Compounds. 2023 Dec;969:172318. doi:10.1016/j.jallcom.2023.172318
Bondarde MP, Jain R, Sohn JS, Lokhande KD, Bhakare MA, Dhumal PS, et al. Carbon-based anode materials for lithium-ion batteries. Lithium-Sulfur Batteries. 2022;521–45. doi:10.1016/b978-0-323-91934-0.00004-1
Chaudhary N, Khanuja M. Electrochemistry—concepts and methodologies. Electrochemical Sensors. 2022;31–50. doi:10.1016/b978-0-12-823148-7.00002-7
Liu J, Wang S, He J, Liang K, Li J, Huang X, et al. Based on N, F, and p co-doping biomass carbon to construct 3D porous carbon coated LiFePO4 for preparing lithium-ion batteries. Journal of Industrial and Engineering Chemistry. 2024 Mar; doi:10.1016/j.jiec.2024.03.023
Ahaliabadeh Z, Kong X, Fedorovskaya E, Kallio T. Extensive comparison of doping and coating strategies for NI-rich positive electrode materials. Journal of Power Sources. 2022 Aug;540:231633. doi:10.1016/j.jpowsour.2022.231633
Wang C, Yuan X, Tan H, Jian S, Ma Z, Zhao J, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance. Coatings. 2021 Sept 18;11(9):1137. doi:10.3390/coatings11091137
Gao Y, Xiong K, Zhang H, Zhu B. Effect of RU doping on the properties of lifepo4/c cathode materials for lithium-ion batteries. ACS Omega. 2021 May 25;6(22):14122–9. doi:10.1021/acsomega.1c00595
Chen X, Li Y, Wang J. Enhanced electrochemical performance of LiFePO4 originating from the synergistic effect of zno and C co-modification. Nanomaterials. 2020 Dec 23;11(1):12. doi:10.3390/nano11010012
Jugović D, Uskoković D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders. Journal of Power Sources. 2009 May;190(2):538–44. doi:10.1016/j.jpowsour.2009.01.074
Shi Q, Xue L, Wei Z, Liu F, Du X, DesMarteau DD. Improvement in LiFePO4–Li Battery performance via poly(perfluoroalkylsulfonyl)imide (PFSI) based Ionene Composite Binder. Journal of Materials Chemistry A. 2013;1(47):15016. doi:10.1039/c3ta13364h
Liu Y, Qin W, Zhang D, Feng L, Wu L. Effect of na+ in situ doping on lifepo4/C cathode material for lithium-ion batteries. Progress in Natural Science: Materials International. 2021 Feb;31(1):14–8. doi:10.1016/j.pnsc.2020.10.006
Shaikh SF, Ubaidullah M, Mane RS, Al-Enizi AM. Types, synthesis methods and applications of ferrites. Spinel Ferrite Nanostructures for Energy Storage Devices. 2020;51–82. doi:10.1016/b978-0-12-819237-5.00004-3
Zhao N, Li Y, Zhi X, Wang L, Zhao X, Wang Y, et al. Effect of Ce3+ doping on the properties of LiFePO4 cathode material. Journal of Rare Earths. 2016 Feb;34(2):174–80. doi:10.1016/s1002-0721(16)60011-x
Cech O, Thomas JE, Sedlarikova M, Fedorkova A, Vondrak J, Moreno MS, et al. Performance improvement on LiFePO4/C composite cathode for lithium-ion batteries. Solid State Sciences. 2013 Jun;20:110–4. doi:10.1016/j.solidstatesciences.2013.03.017
Prihandoko B, Zainuri M, Kirana N, Priyono S, Nuroniah I. Synthesis and characterization of active cathode material of LIFESIXP1-XO4/C with variation of doping si ions. Materials Today: Proceedings. 2019;13:59–64. doi:10.1016/j.matpr.2019.03.187
Zainuri M, Triwikantoro, Zahra PA. Active materials lifesixp1-xo4/c as lithium ion battery cathode with doping variations si ions (0≤x≤0,06). Key Engineering Materials. 2020 Aug;860:75–80. doi:10.4028/www.scientific.net/kem.860.75
Yi D, Cui X, Li N, Zhang L, Yang D. Enhancement of electrochemical performance of lifepo4@c by GA coating. ACS Omega. 2020 Apr 21;5(17):9752–8. doi:10.1021/acsomega.9b04165
Kim S, Kim U, Kim J, Cho W. Synthesis of porous lifepo4 cathode material by citrate process for lithium ion battery. Journal of the Ceramic Society of Japan. 2016;124(2):145–9. doi:10.2109/jcersj2.15212
Firdausi A, Latif C, Nihlatunnur, Prihandoko B, Zainuri M, Pratapa S. Electrical characteristics of natural ironstone-derived LiFe0.99Cu0.01PO4 and life0.98cu0.02po4 powders. AIP Conference Proceedings. 2020; doi:10.1063/5.0015421
Pattankude B, Balwan A. Review on Coating Process. International Research Journal of Engineering and Technology. 2019 Mar 6;(3):7980-7984
Fotovvati B, Namdari N, Dehghanghadikolaei A. On coating techniques for Surface Protection: A Review. Journal of Manufacturing and Materials Processing. 2019 Mar 25;3(1):28. doi:10.3390/jmmp3010028
Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon. 2012 Aug;50(9):3247–66. doi:10.1016/j.carbon.2011.11.045
Ramasubramanian B, Sundarrajan S, Chellappan V, Reddy MV, Ramakrishna S, Zaghib K. Recent development in carbon-lifepo4 cathodes for lithium-ion batteries: A mini review. Batteries. 2022 Sept 21;8(10):133. doi:10.3390/batteries8100133
Zhang W-J. Structure and performance of Lifepo4 Cathode Materials: A Review. Journal of Power Sources. 2011 Mar;196(6):2962–70. doi:10.1016/j.jpowsour.2010.11.113
Honggowiranto W, Kartini E, Sudaryanto, Rofika RN, Hutamaningtyas E, Subhan A, et al. Improving performance of Lifepo4by addition of Carbon Nano Tube for lithium ion battery. IOP Conference Series: Materials Science and Engineering. 2019 Nov 1;553(1):012060. doi:10.1088/1757-899x/553/1/012060
Zhao Q, Yu Y, Ouyang Q, Hu M, Wang C, Ge J, et al. Surface modification of Lifepo4 by coatings for improving of lithium-ion battery properties. International Journal of Electrochemical Science. 2022 Nov;17(11):221142. doi:10.20964/2022.11.31
Ghosh A, Mohammed OF, Bakr OM. Atomic-level doping of metal clusters. Accounts of Chemical Research. 2018 Nov 19;51(12):3094–103. doi:10.1021/acs.accounts.8b00412
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci. 2014;7(12):3857–86. doi:10.1039/c4ee01432d
Lin W, Yang P, Zhou K, Wang L, Shen C. Indium doping: An effective route to optimize the electrochemical performance of Lifepo4 Cathode material. Solid State Ionics. 2023 Dec;403:116322. doi:10.1016/j.ssi.2023.116322
Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu HQ. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications. 2006 Oct;8(10):1553–7. doi:10.1016/j.elecom.2006.07.014
Chen W, Song F, Yang Y, Chen Q. MN-doped LiFePO4@C as a high-performance cathode material for lithium-ion batteries. Particuology. 2024 Jul;90:418–28. doi:10.1016/j.partic.2024.01.012
Kumar. Comparison on study of lithium ion and lead acid charging and discharging characteristics. International Scientific Journal of Engineering and Management. 2023 Mar 28;02(03). doi:10.55041/isjem00163
Wang C, Yuan X, Tan H, Jian S, Ma Z, Zhao J, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance. Coatings. 2021 Sept 18;11(9):1137. doi:10.3390/coatings11091137