Main Article Content

Abstract

ABSTRAK


 


Baterai ion litium adalah jenis baterai isi ulang yang memiliki kapasitas tinggi, potensi elektrokimia yang baik, dan daya tahan yang kuat. Perkembangan LiFePO4 sebagai material katoda baterai ion litium semakin meningkat dengan adanya beberapa teknik tambahan dalam proses sintesis untuk meningkatkan performa seperti teknik pelapisan dan penyisipan atom. Hal tersebut mempengaruhi volume kristal, serta sifat elektrokimia material berbasis LiFePO4. Metode pelapisan yang menunjukkan peningkatan nilai kapasitansi material berbasis LiFePO4. Sedangkan pada metode penyisipan atom, beberapa penelitian menggunakan atom Ce, Ru, Co, Na, Si, Mn, Zn dan In untuk disisipkan di atom Fe, Li, atau P pada material berbasis LiFePO4. Hasil yang diperoleh dari beberapa penelitian tentang sintesis material katoda LiFePO4 menunjukkan adanya peningkatan kapasitas discharging dan peningkatan volume kristal olivine, sehingga teknik pelapisan dan penyisipan ini dapat digunakan untuk peningkatan performa elektrokimia.


 


Kata  kunci: LiFePO4, Pelapisan, Penyisipan, Volume Kristal, Kapasitansi


 


ABSTRACT


 


Lithium-ion batteries are a type of rechargeable battery that has high capacity, good electrochemical potential, and strong durability. The development of LiFePO4 as a cathode material for lithium-ion batteries has been increasing with the addition of several techniques in the synthesis process to enhance performance, such as coating and atom insertion techniques. These techniques affect the crystal volume and the electrochemical properties of LiFePO4-based materials. Coating methods have shown improvements in the capacitance values of LiFePO4-based materials. Meanwhile, in atom insertion methods, some studies have used Ce, Ru, Co, Na, Si, Mn, Zn, and In atoms to be inserted into Fe, Li, or P atoms in LiFePO4-based materials. Results from several studies on the synthesis of LiFePO4 cathode materials have shown an increase in discharge capacity and an increase in the volume of olivine crystals, indicating that coating and insertion techniques can be used to improve electrochemical performance.


 


Keywords: LiFePO4, Doping, Coating, Crystal Volume, Capacity

Keywords

LiFePO4 Doping Coating Crystal Volume Capacity

Article Details

How to Cite
Intifadhah, S. H., & Syaima, H. (2024). Mini-Review: The Influence of Coating and Doping on The Crystal Volume and Discharge Capacity of Lithium Iron Phosphate-Based Materials as Battery Cathode. Jurnal Kumparan Fisika, 7(2), 74–83. https://doi.org/10.33369/jkf.7.2.74-83

References

  1. Yoshino A. Development of the lithium-ion battery and recent technological trends. Lithium-Ion Batteries. 2014;1–20. doi:10.1016/b978-0-444-59513-3.00001-7
  2. Satyavani TVSL, Srinivas Kumar A, Subba Rao PSV. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A Review. Engineering Science and Technology, an International Journal. 2016 Mar;19(1):178–88. doi:10.1016/j.jestch.2015.06.002
  3. Wang J, Gu Y-J, Kong W-L, Liu H-Q, Chen Y-B, Liu W. Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4. Solid State Ionics. 2018 Dec;327:11–7. doi:10.1016/j.ssi.2018.10.015
  4. Zhao J-W, Zhao S-X, Wu X, Cheng H-M, Nan C-W. The double role of silicon in improving the rate performance of LiFePO4 cathode materials. Journal of Alloys and Compounds. 2017 Mar;699:849–55. doi:10.1016/j.jallcom.2016.12.430
  5. Shalaby MS, Alziyadi MO, Gamal H, Hamdy S. Solid-state lithium-ion battery: The key components enhance the performance and efficiency of the anode, cathode, and solid electrolytes. Journal of Alloys and Compounds. 2023 Dec;969:172318. doi:10.1016/j.jallcom.2023.172318
  6. Bondarde MP, Jain R, Sohn JS, Lokhande KD, Bhakare MA, Dhumal PS, et al. Carbon-based anode materials for lithium-ion batteries. Lithium-Sulfur Batteries. 2022;521–45. doi:10.1016/b978-0-323-91934-0.00004-1
  7. Chaudhary N, Khanuja M. Electrochemistry—concepts and methodologies. Electrochemical Sensors. 2022;31–50. doi:10.1016/b978-0-12-823148-7.00002-7
  8. Liu J, Wang S, He J, Liang K, Li J, Huang X, et al. Based on N, F, and p co-doping biomass carbon to construct 3D porous carbon coated LiFePO4 for preparing lithium-ion batteries. Journal of Industrial and Engineering Chemistry. 2024 Mar; doi:10.1016/j.jiec.2024.03.023
  9. Ahaliabadeh Z, Kong X, Fedorovskaya E, Kallio T. Extensive comparison of doping and coating strategies for NI-rich positive electrode materials. Journal of Power Sources. 2022 Aug;540:231633. doi:10.1016/j.jpowsour.2022.231633
  10. Wang C, Yuan X, Tan H, Jian S, Ma Z, Zhao J, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance. Coatings. 2021 Sept 18;11(9):1137. doi:10.3390/coatings11091137
  11. Gao Y, Xiong K, Zhang H, Zhu B. Effect of RU doping on the properties of lifepo4/c cathode materials for lithium-ion batteries. ACS Omega. 2021 May 25;6(22):14122–9. doi:10.1021/acsomega.1c00595
  12. Chen X, Li Y, Wang J. Enhanced electrochemical performance of LiFePO4 originating from the synergistic effect of zno and C co-modification. Nanomaterials. 2020 Dec 23;11(1):12. doi:10.3390/nano11010012
  13. Jugović D, Uskoković D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders. Journal of Power Sources. 2009 May;190(2):538–44. doi:10.1016/j.jpowsour.2009.01.074
  14. Shi Q, Xue L, Wei Z, Liu F, Du X, DesMarteau DD. Improvement in LiFePO4–Li Battery performance via poly(perfluoroalkylsulfonyl)imide (PFSI) based Ionene Composite Binder. Journal of Materials Chemistry A. 2013;1(47):15016. doi:10.1039/c3ta13364h
  15. Liu Y, Qin W, Zhang D, Feng L, Wu L. Effect of na+ in situ doping on lifepo4/C cathode material for lithium-ion batteries. Progress in Natural Science: Materials International. 2021 Feb;31(1):14–8. doi:10.1016/j.pnsc.2020.10.006
  16. Shaikh SF, Ubaidullah M, Mane RS, Al-Enizi AM. Types, synthesis methods and applications of ferrites. Spinel Ferrite Nanostructures for Energy Storage Devices. 2020;51–82. doi:10.1016/b978-0-12-819237-5.00004-3
  17. Zhao N, Li Y, Zhi X, Wang L, Zhao X, Wang Y, et al. Effect of Ce3+ doping on the properties of LiFePO4 cathode material. Journal of Rare Earths. 2016 Feb;34(2):174–80. doi:10.1016/s1002-0721(16)60011-x
  18. Cech O, Thomas JE, Sedlarikova M, Fedorkova A, Vondrak J, Moreno MS, et al. Performance improvement on LiFePO4/C composite cathode for lithium-ion batteries. Solid State Sciences. 2013 Jun;20:110–4. doi:10.1016/j.solidstatesciences.2013.03.017
  19. Prihandoko B, Zainuri M, Kirana N, Priyono S, Nuroniah I. Synthesis and characterization of active cathode material of LIFESIXP1-XO4/C with variation of doping si ions. Materials Today: Proceedings. 2019;13:59–64. doi:10.1016/j.matpr.2019.03.187
  20. Zainuri M, Triwikantoro, Zahra PA. Active materials lifesixp1-xo4/c as lithium ion battery cathode with doping variations si ions (0≤x≤0,06). Key Engineering Materials. 2020 Aug;860:75–80. doi:10.4028/www.scientific.net/kem.860.75
  21. Yi D, Cui X, Li N, Zhang L, Yang D. Enhancement of electrochemical performance of lifepo4@c by GA coating. ACS Omega. 2020 Apr 21;5(17):9752–8. doi:10.1021/acsomega.9b04165
  22. Kim S, Kim U, Kim J, Cho W. Synthesis of porous lifepo4 cathode material by citrate process for lithium ion battery. Journal of the Ceramic Society of Japan. 2016;124(2):145–9. doi:10.2109/jcersj2.15212
  23. Firdausi A, Latif C, Nihlatunnur, Prihandoko B, Zainuri M, Pratapa S. Electrical characteristics of natural ironstone-derived LiFe0.99Cu0.01PO4 and life0.98cu0.02po4 powders. AIP Conference Proceedings. 2020; doi:10.1063/5.0015421
  24. Pattankude B, Balwan A. Review on Coating Process. International Research Journal of Engineering and Technology. 2019 Mar 6;(3):7980-7984
  25. Fotovvati B, Namdari N, Dehghanghadikolaei A. On coating techniques for Surface Protection: A Review. Journal of Manufacturing and Materials Processing. 2019 Mar 25;3(1):28. doi:10.3390/jmmp3010028
  26. Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon. 2012 Aug;50(9):3247–66. doi:10.1016/j.carbon.2011.11.045
  27. Ramasubramanian B, Sundarrajan S, Chellappan V, Reddy MV, Ramakrishna S, Zaghib K. Recent development in carbon-lifepo4 cathodes for lithium-ion batteries: A mini review. Batteries. 2022 Sept 21;8(10):133. doi:10.3390/batteries8100133
  28. Zhang W-J. Structure and performance of Lifepo4 Cathode Materials: A Review. Journal of Power Sources. 2011 Mar;196(6):2962–70. doi:10.1016/j.jpowsour.2010.11.113
  29. Honggowiranto W, Kartini E, Sudaryanto, Rofika RN, Hutamaningtyas E, Subhan A, et al. Improving performance of Lifepo4by addition of Carbon Nano Tube for lithium ion battery. IOP Conference Series: Materials Science and Engineering. 2019 Nov 1;553(1):012060. doi:10.1088/1757-899x/553/1/012060
  30. Zhao Q, Yu Y, Ouyang Q, Hu M, Wang C, Ge J, et al. Surface modification of Lifepo4 by coatings for improving of lithium-ion battery properties. International Journal of Electrochemical Science. 2022 Nov;17(11):221142. doi:10.20964/2022.11.31
  31. Ghosh A, Mohammed OF, Bakr OM. Atomic-level doping of metal clusters. Accounts of Chemical Research. 2018 Nov 19;51(12):3094–103. doi:10.1021/acs.accounts.8b00412
  32. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci. 2014;7(12):3857–86. doi:10.1039/c4ee01432d
  33. Lin W, Yang P, Zhou K, Wang L, Shen C. Indium doping: An effective route to optimize the electrochemical performance of Lifepo4 Cathode material. Solid State Ionics. 2023 Dec;403:116322. doi:10.1016/j.ssi.2023.116322
  34. Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu HQ. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications. 2006 Oct;8(10):1553–7. doi:10.1016/j.elecom.2006.07.014
  35. Chen W, Song F, Yang Y, Chen Q. MN-doped LiFePO4@C as a high-performance cathode material for lithium-ion batteries. Particuology. 2024 Jul;90:418–28. doi:10.1016/j.partic.2024.01.012
  36. Kumar. Comparison on study of lithium ion and lead acid charging and discharging characteristics. International Scientific Journal of Engineering and Management. 2023 Mar 28;02(03). doi:10.55041/isjem00163
  37. Wang C, Yuan X, Tan H, Jian S, Ma Z, Zhao J, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance. Coatings. 2021 Sept 18;11(9):1137. doi:10.3390/coatings11091137