Main Article Content
Abstract
ABSTRAK
Pemodelan transpor ion dalam sistem saraf sangat penting untuk memahami mekanisme potensial aksi dan dinamika membran sel. Penelitian ini menyajikan simulasi dinamika potensial membran akson berdasarkan model Morris-Lecar, yang merepresentasikan aktivitas neuron dengan memasukkan kontribusi utama dari ion K⁺ (Kalium) dan Ca²⁺ (Kalsium). Simulasi dilakukan menggunakan metode numerik ODE45 pada platform Matlab. Model ini mencakup dua variabel utama: potensial membran dan variabel saluran ion (K⁺ dan Ca²⁺), yang diturunkan dari sistem persamaan diferensial. Hasil simulasi menunjukkan bahwa model Morris-Lecar secara efektif merepresentasikan osilasi dan ambang eksitabilitas neuron dalam menanggapi stimulus arus. Pengaruh dominan ion Ca²⁺ terhadap proses depolarisasi serta peran ion K⁺ dalam repolarisasi juga ditunjukkan secara kuantitatif. Dengan pendekatan ini, metode ODE45 terbukti stabil dan efisien dalam menangani dinamika neuron yang kompleks. Studi ini memberikan dasar yang kuat untuk analisis lebih lanjut dalam neurofisiologi komputasional dan pemodelan biologi seluler.
Kata kunci : Transpor Ion, Model Morris-Lecar, Metode ODE45.
ABSTRACT
Modeling ion transport in the nervous system is essential to understanding the mechanisms of action potentials and cell membrane dynamics. This study presents simulations of axon membrane potential dynamics based on the Morris-Lecar model, which uses K⁺ (potassium) and Ca²⁺ (calcium) ions to represent neuronal activity. The simulations were performed using the ODE45 numerical method on the MATLAB platform. The model comprises two primary variables: the membrane potential and the ion channel variables (K⁺ and Ca²⁺), which are derived from a system of differential equations. The simulation results demonstrate that the Morris-Lecar model accurately represents neuronal oscillation and excitability thresholds in response to a current stimulus. The simulations also quantitatively demonstrated the dominant influence of Ca²⁺ ions on depolarization and the role of K⁺ ions in repolarization. This approach proved the ODE45 method to be stable and efficient in handling complex neuronal dynamics. This study provides a solid foundation for further computational neurophysiology and cellular biology modeling analysis.
Keyword: Ion transport, Morris-Lecar model, ODE45 method.
Keywords
Article Details
Copyright (c) 2025 Netriani Veminsyah Ahda, Tiara Hardyanti Utama

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
• Creative Commons Attribution-ShareAlike (CC BY-SA)
Jurnal Kumparan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Xiang ZX, Liu GZ, Tang CX, Yan LX. A model of ion transport processes along and across the neuronal membrane. J Integr Neurosci. 2017;16(1):33–55.
- Setiawan H, Firmansyah A, Purwati AE. Buku Ajar Ilmu Biomedik Dasar untuk Mahasiswa Keperawatan. Ciamis: CV. EUREKA MEDIA AKSARA; 2025.
- Bao H, Yu X, Xu Q, Wu H, Bao B. Three-dimensional memristive Morris–Lecar model with magnetic induction effects and its FPGA implementation. Cogn Neurodyn [Internet]. 2023;17(4):1079–92. Available from: https://doi.org/10.1007/s11571-022-09871-6
- Anderson DF, Ermentrout B, Thomas PJ. Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics. J Comput Neurosci. 2015;38(1):67–82.
- Azizi T, Mugabi R. The Phenomenon of Neural Bursting and Spiking in Neurons: Morris-Lecar Model. Appl Math. 2020;11(03):203–26.
- Dmitrichev AS, Kasatkin D V., Klinshov V V., Kirillov SY, Maslennikov O V., Shchapin DS, et al. Nonlinear dynamical models of neurons: Review. Izv Vyss Uchebnykh Zaved Prikl Nelineynaya Din. 2018;26(4):5–58.
- Almatroud OA, Pham VT, Rajagopal K. A Rectified Linear Unit-Based Memristor-Enhanced Morris–Lecar Neuron Model. Mathematics. 2024;12(19):1–10.
- Fisco-Compte P, Aquilué-Llorens D, Roqueiro N, Fossas E, Guillamon A. Empirical modeling and prediction of neuronal dynamics. Biol Cybern [Internet]. 2024;118(1–2):83–110. Available from: https://doi.org/10.1007/s00422-024-00986-z
- Li A, Zhang YJ. Modeling intracellular transport and traffic jam in 3D neurons using PDE-constrained optimization. J Mech. 2021;38:44–59.
- Sharma SK, Mondal A, Kaslik E, Hens C, Antonopoulos CG. Diverse electrical responses in a network of fractional-order conductance-based excitable Morris-Lecar systems. Sci Rep [Internet]. 2023;13(1):1–15. Available from: https://doi.org/10.1038/s41598-023-34807-3
- Kusumastuti N, Kiftiah M. Pemodelan Aliran Listrik pada Sel Saraf Manusia. Bul Ilm Mat Stat dan Ter. 2015;4(2):95–100.
- Ditlevsen S, Greenwood P. The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. J Math Biol. 2013;67(2):239–59.
- Ermentrout B, Terman D. Foundations of Mathematical Neuroscience. New York: Springer US; 2015. 440 p.
- Li C, Liao X, Zhang R. A global exponential robust stability criterion for interval delayed neural networks with variable delays. Neurocomputing. 2006;69(7-9 SPEC. ISS.):803–9.
- Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo ME, Alonso A. Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol. 2000;83(5):2562–79.
- Diantoro T, Alif Fiolana F, Arie Widhining K. D. Klasifikasi Sinyal Delta, Theta, Alpha, Beta, Gamma Pada Electroencephalography (EEG). ALINIER J Artif Intell Appl. 2023;4(2):91–104.
- Robert Cronin, Nicholas Dias, Yung Peng RK, Daniel Harris, BA, Lynn McNicoll, MD, Gary Epstein-Lubow, MD, and Kali S. Thomas P. Computational Neuroscience: Mathematical and Statistical Perspectives. Annu Rev Stat Appl. 2019;176(3):139–48.
- Meier SR, Lancaster JL, Starobin JM. Bursting regimes in a reaction-diffusion system with action potential-dependent equilibrium. PLoS One. 2015;10(3):1–25.
References
Xiang ZX, Liu GZ, Tang CX, Yan LX. A model of ion transport processes along and across the neuronal membrane. J Integr Neurosci. 2017;16(1):33–55.
Setiawan H, Firmansyah A, Purwati AE. Buku Ajar Ilmu Biomedik Dasar untuk Mahasiswa Keperawatan. Ciamis: CV. EUREKA MEDIA AKSARA; 2025.
Bao H, Yu X, Xu Q, Wu H, Bao B. Three-dimensional memristive Morris–Lecar model with magnetic induction effects and its FPGA implementation. Cogn Neurodyn [Internet]. 2023;17(4):1079–92. Available from: https://doi.org/10.1007/s11571-022-09871-6
Anderson DF, Ermentrout B, Thomas PJ. Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics. J Comput Neurosci. 2015;38(1):67–82.
Azizi T, Mugabi R. The Phenomenon of Neural Bursting and Spiking in Neurons: Morris-Lecar Model. Appl Math. 2020;11(03):203–26.
Dmitrichev AS, Kasatkin D V., Klinshov V V., Kirillov SY, Maslennikov O V., Shchapin DS, et al. Nonlinear dynamical models of neurons: Review. Izv Vyss Uchebnykh Zaved Prikl Nelineynaya Din. 2018;26(4):5–58.
Almatroud OA, Pham VT, Rajagopal K. A Rectified Linear Unit-Based Memristor-Enhanced Morris–Lecar Neuron Model. Mathematics. 2024;12(19):1–10.
Fisco-Compte P, Aquilué-Llorens D, Roqueiro N, Fossas E, Guillamon A. Empirical modeling and prediction of neuronal dynamics. Biol Cybern [Internet]. 2024;118(1–2):83–110. Available from: https://doi.org/10.1007/s00422-024-00986-z
Li A, Zhang YJ. Modeling intracellular transport and traffic jam in 3D neurons using PDE-constrained optimization. J Mech. 2021;38:44–59.
Sharma SK, Mondal A, Kaslik E, Hens C, Antonopoulos CG. Diverse electrical responses in a network of fractional-order conductance-based excitable Morris-Lecar systems. Sci Rep [Internet]. 2023;13(1):1–15. Available from: https://doi.org/10.1038/s41598-023-34807-3
Kusumastuti N, Kiftiah M. Pemodelan Aliran Listrik pada Sel Saraf Manusia. Bul Ilm Mat Stat dan Ter. 2015;4(2):95–100.
Ditlevsen S, Greenwood P. The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. J Math Biol. 2013;67(2):239–59.
Ermentrout B, Terman D. Foundations of Mathematical Neuroscience. New York: Springer US; 2015. 440 p.
Li C, Liao X, Zhang R. A global exponential robust stability criterion for interval delayed neural networks with variable delays. Neurocomputing. 2006;69(7-9 SPEC. ISS.):803–9.
Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo ME, Alonso A. Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol. 2000;83(5):2562–79.
Diantoro T, Alif Fiolana F, Arie Widhining K. D. Klasifikasi Sinyal Delta, Theta, Alpha, Beta, Gamma Pada Electroencephalography (EEG). ALINIER J Artif Intell Appl. 2023;4(2):91–104.
Robert Cronin, Nicholas Dias, Yung Peng RK, Daniel Harris, BA, Lynn McNicoll, MD, Gary Epstein-Lubow, MD, and Kali S. Thomas P. Computational Neuroscience: Mathematical and Statistical Perspectives. Annu Rev Stat Appl. 2019;176(3):139–48.
Meier SR, Lancaster JL, Starobin JM. Bursting regimes in a reaction-diffusion system with action potential-dependent equilibrium. PLoS One. 2015;10(3):1–25.
