Main Article Content

Abstract

This study aims to evaluate the performance of various types of Light Dependent Resistor (LDR) sensors as alternative luxmeters based on Arduino using exponential and power regression calibration methods. Four LDR types—GL5506, GL5528, GL5537, and GL5539—were tested under controlled lighting conditions using a dimmable smart bulb with light intensity variations from 5% to 100%. A commercial GM1030C luxmeter was used as the calibration reference. The measured data were analyzed using statistical parameters, including the coefficient of determination (R²), root mean square error (RMSE), mean absolute error (MAE), and mean percentage error, to determine the accuracy and stability of each sensor. The results show that all sensor types achieved R² values ranging from 0.9772 to 0.9992, indicating that both regression models effectively represent the nonlinear relationship between sensor output and actual light intensity. The GL5506 sensor exhibited the best accuracy with R² = 0.9962, RMSE = 13.13 lux, MAE = 11.1 lux, and an average error of 2.89% using the power regression model. The power regression model performed better for sensors with fast and linear responses (GL5506 and GL5528), while the exponential regression model was more suitable for sensors with gradual nonlinear responses (GL5537 and GL5539). With overall errors below 7%, all LDR sensors tested are suitable for use as economical and reliable Arduino-based luxmeters for educational and basic research applications.

Keywords

LDR Luxmeter Calibration Exponential Regression Model Power Regression Model LDR Luxmeter Kalibrasi Regresi eksponensial Regresi power

Article Details

How to Cite
Heriansyah, H., & Gultom, F. B. (2025). EVALUATION OF THE PERFORMANCE OF VARIOUS TYPES OF LDR SENSORS AS LUXMETERS THROUGH EXPONENTIAL AND POWER REGRESSION CALIBRATION. Jurnal Kumparan Fisika, 8(3), 87–94. https://doi.org/10.33369/jkf.8.3.87-94

References

  1. Hashemifar Z, Sanjarian F, Naghdi Badi H, Mehrafarin A. Varying levels of natural light intensity affect the phyto-biochemical compounds, antioxidant indices and genes involved in the monoterpene biosynthetic pathway of Origanum majorana L. BMC Plant Biol. 1 Desember 2024;24(1).
  2. Heindri N, Dewi OC, Ismoyo AD. Lighting system evaluations of working space in educational building, Universitas Indonesia. Dalam: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd; 2022.
  3. Heriansyah, Rahman R, Triawan DA, Ernis G. Analisis Kualitas Pencahayaan di Workshop D3 Laboratorium Sains FMIPA Universitas Bengkulu. Titian Ilmu: Jurnal Ilmiah Multi Sciences. 23 Juli 2023;15(2):76–82.
  4. Setya W, Ramadhana A, Ramadhana A, Restu Putri H, Santoso A, Malik A, dkk. Design and development of measurement of measuring light resistance using Light Dependent Resistance (LDR) sensors. Dalam: Journal of Physics: Conference Series. IOP Publishing Ltd; 2019.
  5. Shiddiqy MIA, Sunardi S. Performance Analysis of LDR, Photodiode, and BH1750 Sensors for Sunlight Intensity Measurement in Open Areas. Signal and Image Processing Letters. 28 Juni 2024;6(1):11–26.
  6. KHT Royal Institute of Technology. GL55 Series CdS Photoresistor Manual [Internet]. [dikutip 7 Juni 2025]. Tersedia pada: https://www.kth.se/social/files/54ef17dbf27654753f437c56/GL5537.pdf
  7. Manik S, Muslimin AM, Subgan AA. PERANCANGAN ALAT UKUR INTENSITAS CAHAYA BERBASIS ARDUINO LEONARDO MENGGUNAKAN SENSOR LDR (Light Dependent Resistor). Jurnal Natural. 1 April 2020;16(1):1–13.
  8. Khotimah O, Darmawan D, Rosdiana E. 22.04.909_jurnal_eproc (1). eProceedings of Engineering [Internet]. Juni 2022 [dikutip 13 Oktober 2025];9(3):866–74. Tersedia pada: https://repository.telkomuniversity.ac.id/pustaka/files/178845/jurnal_eproc/perangkat-dan-metoda-kalibrasi-sensor-universal.pdf
  9. Kusuma A, Saputra H, Muharzi, Sandi T. Analisis Perbandingan Performa Sensor Light Dependent Resistor (LDR) pada Ukuran 5mm dan 10mm dalam Pengukuran Intensitas Cahaya. Dalam: Seminar Nasional Teknik Elektro [Internet]. Magelang: Forum Pendidikan Tinggi Teknik Elektro Indonesia (FORTEI); 2023 [dikutip 14 Agustus 2025]. hlm. 175–80. Tersedia pada: https://snte.fortei.org/list/index.php/snte/article/view/38/39
  10. Sricharoen N, Supasri T, Traisathit P, Prasitwattanaseree S, Srikummoon P, Longmali J. Improving Monitored PM2.5 Data from Low-Cost Sensors in Chiang Mai, Thailand: Utilizing a Nonlinear Regression Modeling Approach. Curr Appl Sci Technol. 27 Maret 2025;25(5):1–23.
  11. Aquil Shah, Ashwith R, Derick Robinson, Gagan Raj, Dr. Roshan Shetty. Controlling the Intensity of a Bulb Based on Surrounding Light Using Arduino and LDR. International Journal of Advanced Research in Science, Communication and Technology. 3 Januari 2025;5(1):184–7.
  12. Gutierrez-Ballesteros E, Rönnberg S, Gil-de-Castro A. Power quality impact on light intensity and flicker sensitivity of LED lamps. IET Conference Proceedings. 4 Juli 2023;2023(6):241–5.
  13. Boukdir Y, Omari H El. Characterization of cadmium sulfide light dependent resistors sensors for optical solar trackers. International Journal of Electrical and Computer Engineering (IJECE). 1 Februari 2023;13(1):184–94.
  14. Shi N, Yang J, Cao Z, Jin X. A Programmable Ambient Light Sensor with Dark Current Compensation and Wide Dynamic Range. Sensors. 24 Mei 2024;24(11):3396.
  15. Xiao X, White EP, Hooten MB, Durham SL. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology. Oktober 2011;92(10):1887–94.
  16. CHEN Y. POWER-LAW DISTRIBUTIONS BASED ON EXPONENTIAL DISTRIBUTIONS: LATENT SCALING, SPURIOUS ZIPF’S LAW, AND FRACTAL RABBITS. Fractals. 28 Juni 2015;23(02):1550009.