Main Article Content
Abstract
ABSTRAK
Telah berhasil disintesis nanopartikel ferit spinel campuran nanokristalin cobalt zink ferit (CoZnFe₂O₄) dengan enkapsulasi PEG-4000 menggunakan metode kopresipitasi, dengan massa bubuk PEG-4000 divariasikan sebesar 0; 0,5; 1,0; 2,0; 2,5; dan 3,0 g. Berdasarkan hasil karakterisasi difraksi sinar-X (XRD), ditemukan puncak difraksi spinel utama (2θ) yang terkait dengan bidang (220), (311), (400), (422), (511), dan (440) yang sesuai dengan struktur spinel kubik fase tunggal dengan kelompok ruang Fd3m. Ukuran partikel CoZnFe₂O₄ berkurang setelah dienkapsulasi dengan PEG-4000, dari 14 nm menjadi 11 nm. Analisis Fourier Transform Infrared (FTIR) menunjukkan getaran regangan intrinsik logam–oksigen pada rentang frekuensi 431 cm⁻¹ dan 595 cm⁻¹ yang berasal dari getaran logam–oksigen pada subkisi oktahedral dan tetrahedral, sedangkan sampel CoZnFe₂O₄ yang dienkapsulasi menunjukkan getaran khas PEG, yaitu C–O, C–H, dan O–H pada masing-masing frekuensi 1064 cm⁻¹, 1481 cm⁻¹, dan 3437 cm⁻¹. Koersivitas nanopartikel CoZnFe₂O₄ yang tidak dienkapsulasi menurun setelah dienkapsulasi dengan PEG-4000, dari 252 Oe menjadi 49 Oe, yang dikaitkan dengan penurunan ukuran partikel. Magnetisasi saturasi (Ms) nanopartikel CoZnFe₂O₄ yang tidak dienkapsulasi juga berkurang dari 29 emu/g menjadi 13 emu/g setelah dienkapsulasi dengan PEG-4000.
Kata kunci - Nanopartikel cobalt zink ferit (CoZnFe₂O₄), Kopresipitasi, Enkapsulasi, PEG-4000.
ABSTRACT
Mixed spinel cobalt zinc ferrite (CoZnFe₂O₄) nanoparticles encapsulated with PEG-4000 were successfully synthesized using the coprecipitation method with PEG-4000 powder masses of 0, 0.5, 1.0, 2.0, 2.5, and 3.0 g. X-ray diffraction (XRD) analysis revealed the main spinel diffraction peaks at (220), (311), (400), (422), (511), and (440), confirming a single-phase cubic spinel structure with space group Fd3m. The particle size of CoZnFe₂O₄ decreased from 14 nm to 11 nm after encapsulation with PEG-4000. Fourier Transform Infrared (FTIR) spectra showed intrinsic metal–oxygen stretching vibrations at 431 cm⁻¹ and 595 cm⁻¹ associated with octahedral and tetrahedral sublattices, respectively, while the encapsulated samples exhibited characteristic PEG vibrations of C–O, C–H, and O–H at 1064 cm⁻¹, 1481 cm⁻¹, and 3437 cm⁻¹. The coercivity of bare CoZnFe₂O₄ nanoparticles decreased from 252 Oe to 49 Oe after PEG-4000 encapsulation, which is attributed to the reduction in particle size. In addition, the saturation magnetization (Ms) decreased from 29 emu/g for the unencapsulated nanoparticles to 13 emu/g for the PEG-4000 encapsulated samples.
Keywords - Cobalt zinc ferrite nanoparticles (CoZnFe₂O₄); Coprecipitation; Encapsulation; PEG-4000.
Keywords
Article Details
Copyright (c) 2025 Adrian Rahmat Nur, La Ode Rusman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
• Creative Commons Attribution-ShareAlike (CC BY-SA)
Jurnal Kumparan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Nadeem K, Krenn H, Sarwar W, Mumtaz M. Comparison of surface effects in SiO2 coated and uncoated nickel ferrite nanoparticles. Appl Surf Sci. 2014 Jan;288:677–81.
- Bohara RA, Yadav HM, Thorat ND, Mali SS, Hong CK, Nanaware SG, et al. Synthesis of functionalized Co 0.5 Zn 0.5 Fe 2 O 4 nanoparticles for biomedical applications. J Magn Magn Mater. 2015 Mar;378:397–401.
- Ghayour H, Abdellahi M, Ozada N, Jabbrzare S, Khandan A. Hyperthermia application of zinc doped nickel ferrite nanoparticles. Journal of Physics and Chemistry of Solids. 2017 Dec;111:464–72.
- Kharisov BI, Dias HVR, Kharissova O V. Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry. 2019 Nov;12(7):1234–46.
- Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical Engineering Journal. 2007 May;129(1–3):51–65.
- Asmin LO, Mutmainnah M, Suaryadi E. Sintesis Nanopartikel Zinc Ferrite (ZnFe2O4) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya. SPEKTRA: Jurnal Fisika dan Aplikasinya. 2015;16(3):62–6.
- Kumar S, Singh V, Mandal UK, Kotnala RK. Nanocrystalline Co0.5Zn0.5Fe2O4 ferrite: Synthesis, characterization and study of their magnetic behavior at different temperatures. Inorganica Chim Acta. 2015 Mar;428:21–6.
- Nikam DS, Jadhav SV, Khot VM, Phadatare MR, Pawar SH. Study of AC magnetic heating characteristics of Co0.5Zn0.5Fe2O4 nanoparticles for magnetic hyperthermia therapy. J Magn Magn Mater. 2014 Jan;349:208–13.
- Hankare PP, Jadhav SD, Sankpal UB, Chavan SS, Waghmare KJ, Chougule BK. Synthesis, characterization and effect of sintering temperature on magnetic properties of MgNi ferrite prepared by co-precipitation method. J Alloys Compd. 2009 May;475(1–2):926–9.
- Yu M, Huang S, Yu KJ, Clyne AM. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture. Int J Mol Sci. 2012 May 9;13(5):5554–70.
- Sertkol M, Köseoğlu Y, Baykal A, Kavas H, Başaran AC. Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J Magn Magn Mater. 2009 Feb;321(3):157–62.
- Antarnusa G, Suharyadi E. A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor. Mater Res Express. 2020 May 1;7(5).
- Darminto, Cholishoh MN, Perdana FA, Baqiya MA, Mashuri, Cahyono Y, et al. Preparing Fe[sub 3]O[sub 4] Nanoparticles from Fe[sup 2+] Ions Source by Co-precipitation Process in Various pH. In 2011. p. 234–7.
- Arulmozhi KT, Mythili N. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents. AIP Adv. 2013 Dec 1;3(12).
- Raut AV, Barkule RS, Shengule DR, Jadhav KM. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J Magn Magn Mater. 2014 May;358–359:87–92.
- Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K. Synthesis and characterization of polyethylene glycol (PEG) coated Fe 3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jan 25;135:536–9.
- Kareem SH, Ati AA, Shamsuddin M, Lee SL. Nanostructural, morphological and magnetic studies of PEG/Mn(1−)Zn()Fe2O4 nanoparticles synthesized by co-precipitation. Ceram Int. 2015 Nov;41(9):11702–9.
- Egerton RF. Physical Principles of Electron Microscopy. Boston, MA: Springer US; 2005.
- Nuzully S, Kato T, Iwata S, Suharyadi DE. Seveny Nuzully / Pengaruh Konsentrasi Polyethylene glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe 3 O 4 Jurnal Fisika Indonesia Pengaruh Konsentrasi Polyethylene glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe 3 O 4. 2013;(51).
References
Nadeem K, Krenn H, Sarwar W, Mumtaz M. Comparison of surface effects in SiO2 coated and uncoated nickel ferrite nanoparticles. Appl Surf Sci. 2014 Jan;288:677–81.
Bohara RA, Yadav HM, Thorat ND, Mali SS, Hong CK, Nanaware SG, et al. Synthesis of functionalized Co 0.5 Zn 0.5 Fe 2 O 4 nanoparticles for biomedical applications. J Magn Magn Mater. 2015 Mar;378:397–401.
Ghayour H, Abdellahi M, Ozada N, Jabbrzare S, Khandan A. Hyperthermia application of zinc doped nickel ferrite nanoparticles. Journal of Physics and Chemistry of Solids. 2017 Dec;111:464–72.
Kharisov BI, Dias HVR, Kharissova O V. Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry. 2019 Nov;12(7):1234–46.
Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical Engineering Journal. 2007 May;129(1–3):51–65.
Asmin LO, Mutmainnah M, Suaryadi E. Sintesis Nanopartikel Zinc Ferrite (ZnFe2O4) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya. SPEKTRA: Jurnal Fisika dan Aplikasinya. 2015;16(3):62–6.
Kumar S, Singh V, Mandal UK, Kotnala RK. Nanocrystalline Co0.5Zn0.5Fe2O4 ferrite: Synthesis, characterization and study of their magnetic behavior at different temperatures. Inorganica Chim Acta. 2015 Mar;428:21–6.
Nikam DS, Jadhav SV, Khot VM, Phadatare MR, Pawar SH. Study of AC magnetic heating characteristics of Co0.5Zn0.5Fe2O4 nanoparticles for magnetic hyperthermia therapy. J Magn Magn Mater. 2014 Jan;349:208–13.
Hankare PP, Jadhav SD, Sankpal UB, Chavan SS, Waghmare KJ, Chougule BK. Synthesis, characterization and effect of sintering temperature on magnetic properties of MgNi ferrite prepared by co-precipitation method. J Alloys Compd. 2009 May;475(1–2):926–9.
Yu M, Huang S, Yu KJ, Clyne AM. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture. Int J Mol Sci. 2012 May 9;13(5):5554–70.
Sertkol M, Köseoğlu Y, Baykal A, Kavas H, Başaran AC. Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J Magn Magn Mater. 2009 Feb;321(3):157–62.
Antarnusa G, Suharyadi E. A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor. Mater Res Express. 2020 May 1;7(5).
Darminto, Cholishoh MN, Perdana FA, Baqiya MA, Mashuri, Cahyono Y, et al. Preparing Fe[sub 3]O[sub 4] Nanoparticles from Fe[sup 2+] Ions Source by Co-precipitation Process in Various pH. In 2011. p. 234–7.
Arulmozhi KT, Mythili N. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents. AIP Adv. 2013 Dec 1;3(12).
Raut AV, Barkule RS, Shengule DR, Jadhav KM. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J Magn Magn Mater. 2014 May;358–359:87–92.
Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K. Synthesis and characterization of polyethylene glycol (PEG) coated Fe 3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jan 25;135:536–9.
Kareem SH, Ati AA, Shamsuddin M, Lee SL. Nanostructural, morphological and magnetic studies of PEG/Mn(1−)Zn()Fe2O4 nanoparticles synthesized by co-precipitation. Ceram Int. 2015 Nov;41(9):11702–9.
Egerton RF. Physical Principles of Electron Microscopy. Boston, MA: Springer US; 2005.
Nuzully S, Kato T, Iwata S, Suharyadi DE. Seveny Nuzully / Pengaruh Konsentrasi Polyethylene glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe 3 O 4 Jurnal Fisika Indonesia Pengaruh Konsentrasi Polyethylene glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe 3 O 4. 2013;(51).
