Main Article Content

Abstract

ABSTRAK


 


Kejadian hujan sangat lebat di Kabupaten Cilacap pada 8–9 Oktober 2022 yang memicu banjir pada 9 Oktober 2022 menunjukkan adanya interaksi berbagai skala atmosfer yang kompleks dan belum banyak dibahas dalam studi sebelumnya. Penelitian ini menganalisis mekanisme penguatan konveksi pada skala global, regional, dan lokal dengan mengintegrasikan indeks NINO 3.4, IOD, MJO, suhu permukaan laut, pola aliran angin, data ECMWF, serta citra satelit Himawari-8 band 13. Hasil analisis menunjukkan bahwa kombinasi La Niña dan IOD negatif yang diikuti anomali suhu permukaan laut positif di selatan Jawa membentuk latar kondisi basah yang signifikan, namun fase 4 MJO yang secara klimatologis cenderung melemahkan konveksi justru tidak menghambat perkembangan awan. Ketidaksesuaian ini dijelaskan oleh adanya penguatan konvergensi regional dan pendinginan suhu puncak awan hingga −76,9 °C, yang menandakan pertumbuhan awan konvektif secara intensif. Pada skala lokal, indeks stabilitas atmosfer menunjukkan kondisi labil yang memicu terbentuknya hujan sangat lebat pada 8 Oktober 2022 antara pukul 18.00–21.00 UTC. Temuan ini menegaskan bahwa hujan ekstrem di Cilacap bukan hanya dipicu oleh kondisi globa yang basah, tetapi oleh hubungan antara anomali termal regional dan ketidakstabilan lokal yang mampu meniadakan efek pelemahan konveksi dari MJO fase 4. Studi ini memberikan pemahaman yang lebih komprehensif mengenai dinamika berbagai skala pemicu hujan ekstrem di pesisir selatan Jawa dan dapat berkontribusi pada peningkatan akurasi peringatan dini banjir berbasis kondisi atmosfer aktual.


 


Kata  kunci : Hujan Lebat, Ecmwf, Citra Satelit, Observasi, Cilacap


 


ABSTRACT


 


The extreme rainfall event in Cilacap Regency on 8–9 October 2022, which triggered flooding on 9 October 2022 reflects the interaction of complex atmospheric processes across multiple scales and that has not been extensively explored in previous studies. This research investigates the mechanisms that enhanced convection at global, regional, and local scales by integrating the NINO 3.4 index, IOD, MJO, sea surface temperature, wind patterns, ECMWF data, and Himawari-8 band 13 satellite imagery. The analysis shows that the combination of La Niña and a negative IOD accompanied by positive sea surface temperature anomalies south of Java established a markedly moist background environment. However, despite the climatological tendency of MJO phase 4 to suppress convection, it did not inhibit cloud development during this event. This apparent inconsistency is explained by strengthened regional scale convergence and cloud top cooling reaching −76.9 °C, indicating vigorous convective growth. At the local scale, atmospheric stability indices reveal highly unstable conditions that triggered the very heavy rainfall observed on 8 October 2022 between 18.00–21.00 UTC. These findings demonstrate that the extreme rainfall in Cilacap was driven not only by moist global conditions but also by the interplay between regional thermal anomalies and local instability, which effectively counteracted the convective suppression typically associated with MJO phase 4. This study provides a more comprehensive understanding of the multiscale dynamics that trigger extreme rainfall along the southern coast of Java and contributes to improving the accuracy of flood early-warning systems based on real-time atmospheric conditions.


 


Keywords : Heavy Rainfall, Ecmwf, Satellite Imagery, Observation, Cilacap

Keywords

Heavy Rainfall Ecmwf Satellite Imagery Observation Cilacap Hujan Lebat Ecmwf Citra Satelit Observasi Cilacap

Article Details

How to Cite
Maheswara, I. D. G. L., Rizqi, M. N., Nurwibowo, M. F., Zakir, A., & Mulya, A. (2025). ANALISIS HUJAN LEBAT DI CILACAP MENGGUNAKAN MODEL ECMWF, CITRA SATELIT, DAN DATA OBSERVASI . Jurnal Kumparan Fisika, 8(3), 95–104. https://doi.org/10.33369/jkf.8.3.95-104

References

  1. Dolojan NLJ, Moriguchi S, Hashimoto M, Tinh NX, Tanaka H, Terada K. Hydrologic-geotechnical modelling of shallow landslide and flood hazards caused by heavy rainfall. Engineering Geology. 2023;323:107184. https://doi.org/10.1016/j.enggeo.2023.107184.
  2. Yadav M. South Asian Monsoon Extremes and Climate Change. In: Saxena P, Shukla A, Gupta AK, editor. Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation. Singapore: Springer Nature; 2022. p. 59–86. https://doi.org/10.1007/978-981-16-7727-4_4.
  3. Hasan MM. Regional Analysis Of Extreme Weather Events Using Deep Learning. Frontiers in Applied Engineering and Technology. 2024;1(01):235–251. https://doi.org/10.70937/faet.v1i01.38.
  4. Li J, Santek D, Li Z, Lim A, Di D, Min M, Velden C, Menzel WP. Tracking atmospheric motions for obtaining wind estimates using satellite observations – from 2D to 3D. Bulletin of the American Meteorological Society. 2025. https://doi.org/10.1175/BAMS-D-24-0027.1.
  5. Asmita A, Malago JD, Subaer S. Perbandingan Profil Vertikal Divergensi dan Vortisitas Model ECMWF dan Luaran SATAID saat Kejadian Hujan di Mamuju. Jurnal Fisika Unand. 2023;12(4):658–665. https://doi.org/10.25077/jftu.12.4.658-665.2023.
  6. Purwanti SD, Weyai SL, Haryanto YD, Mulya A. Analisis Kondisi Atmosfer Saat Kejadian Hujan Lebat di Sintang Menggunakan Satelit Cuaca dan Model ECMWF (Kasus: 30 September 2021). JPIG (Jurnal Pendidikan dan Ilmu Geografi). 2023;8(1):63–74. https://doi.org/10.21067/jpig.v8i1.8141.
  7. Ariyanto ADP, Samsuri HH, Nugraheni IR, dkk. Kajian Indeks Stabilitas Atmosfer Terhadap Kejadian Hujan Lebat di Wilayah Bogor. Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya). 2021;3:163–172. https://doi.org/10.20961/prosidingsnfa.v3i0.28538.
  8. Arrashid H, Sucahyono D, Haryanto YD, Qomariyatuzzamzami LN. Kondisi dinamika atmosfer saat hujan lebat di Kalimantan Selatan (Periode 12–17 Januari 2021). Buletin Meteorologi, Klimatologi dan Geofisika. 2023;3(4):32–44. https://balai2bmkg.id/index.php/buletin_mkg/article/view/63.
  9. Beliyana E, Ningsih NS, Gunawan SR, Tarya A. Characteristics of Marine Heatwaves in the Indonesian Waters during the PDO, ENSO, and IOD Phases and Their Relationships to Net Surface Heat Flux. Atmosphere. 2023;14(6). https://doi.org/10.3390/atmos14061035.
  10. Wang G, Cai W, Santoso A, Abram N, Ng B, Yang K, Geng T, dkk. The Indian Ocean Dipole in a warming world. Nature Reviews Earth & Environment. 2024;5(8):588–604. https://doi.org/10.1038/s43017-024-00573-7.
  11. Mulyani AS. Antisipasi terjadinya pemanasan global dengan deteksi dini suhu permukaan air menggunakan data satelit. Jurnal Rekayasa Teknik Sipil dan Lingkungan – CENTECH. 2021;2(1):22–29. https://doi.org/10.33541/cen.v2i1.2807.
  12. Batubara MPN, Zainuri M, Kunarso K, Puryajati AD. Diagnosa perilaku MJO aktif pada saat La Nina kuat (2011/2012) di perairan tropis. Buletin Oseanografi Marina. 2022;11(2):193–205.
  13. Asyam AMD, Rochaddi B, Widiaratih R. Hubungan ENSO dan IOD terhadap Suhu Permukaan Laut dan Curah Hujan di Selatan Jawa Tengah. Indonesian Journal of Oceanography. 2024;6(2):165–172.
  14. Anwar IP, Setiawan A, Herho SH, Atmojo AT, Khadami F. Analisis Parameter Laut-Atmosfer terhadap Anomali Tinggi Muka Air di Laut Jawa. Indonesian Journal of Oceanography. 2024;6(4):306–315.
  15. Prasetyo, S., Kurniawan, W., & Rumahorbo, I. R. (2021). Synoptic and Mesoscale Analysis of Extreme Rainfall Event in Cilacap Meteorological Station, Indonesia on December 7, 2018. JIIF (Jurnal Ilmu dan Inovasi Fisika), 5(2), 121-131.
  16. Prasetyo S, Kurniawan W, Rumahorbo IR. Synoptic and Mesoscale Analysis of Extreme Rainfall Event in Cilacap Meteorological Station, Indonesia on December 7, 2018. JIIF (Jurnal Ilmu dan Inovasi Fisika). 2021;5(2):121–131.
  17. BMKG. Probabilistik Curah Hujan 24 Jam. 2025 [diakses 21 November 2025]. Tersedia pada: https://www.bmkg.go.id/cuaca/probabilistikcurahhujan.bmkg?mm=20&hour=24&gen=uxhn08oymx4otepx7e.