Main Article Content

Abstract

ABSTRAK


 


Teknologi artificial intelligence (ai) berpotensi meningkatkan kemampuan berpikir kritis dan pemecahan masalah pada mahasiswa, khususnya pada mata kuliah hidrodinamika yang menuntut keterampilan analitis dan pemecahan masalah. Penelitian ini bertujuan menganalisis efektivitas pembelajaran berbantuan gemini dibandingkan pembelajaran konvensional. Metode penelitian menggunakan desain pretest–posttest dengan membandingkan n-gain berpikir kritis dan pemecahan masalah pada tiga kategori kemampuan awal (low, medium, high). Hasil menunjukkan bahwa kelas kontrol dengan pembelajaran konvensional hanya mengalami peningkatan rendah hingga sedang, baik pada kemampuan berpikir kritis maupun pemecahan masalah (n-gain 0,16–0,43). Sebaliknya, kelas eksperimen yang menggunakan ai-gemini mengalami peningkatan signifikan dengan n-gain berada pada kategori sedang hingga tinggi (0,47–0,76). Seluruh kelompok mencapai nilai post-test pada kategori tinggi–sangat tinggi. Temuan ini mengindikasikan bahwa integrasi ai gemini mampu memberikan umpan balik cepat, penjelasan adaptif, dan dukungan konseptual yang memperkuat pengembangan berpikir kritis dan kemampuan pemecahan masalah mahasiswa. Pembelajaran berbasis ai direkomendasikan sebagai alternatif inovatif dalam perkuliahan hidrodinamika.


 


Kata kunci: Artificial Intelligence, Gemini, Hidrodinamika, berpikir kritis, pemecahan masalah.


 


ABSTRACT


 


The use of artificial intelligence (ai) technology has the potential to improve critical thinking and problem-solving skills in students, especially in hydrodynamics courses that require analytical and problem-solving skills. This study aims to analyze the effectiveness of gemini-assisted learning compared to conventional learning. The research method used a pretest–posttest design by comparing n-gain critical thinking and problem solving in three categories of initial abilities (low, medium, high). The results show that the control class with conventional learning only experienced low to moderate improvement in both critical thinking and problem solving abilities (n-gain 0.16–0.43). In contrast, the experimental class that used ai-gemini experienced a significant increase with n-gain in the moderate to high category (0.47–0.76). All groups achieved post-test scores in the high to very high category. These findings indicate that the integration of ai gemini is capable of providing rapid feedback, adaptive explanations, and conceptual support that strengthen the development of students' critical thinking and problem-solving skills. Ai-based learning is recommended as an innovative alternative in hydrodynamics lectures


 


Keywords: Artificial Intelligence, Gemini, Hydrodynamics, critical thinking, problem solving.

Keywords

Artificial Intelligence Gemini Hidrodinamika Berpikir Kritis Pemecahan pemasalah Artificial Intelligence Gemini Hidrodinamika berpikir kritis pemecahan masalah

Article Details

How to Cite
Putri, D. H., Medriati, R., Ahda, N. V., & Utama, T. H. (2025). EFEKTIVITAS MODEL PEMBELAJARAN TARL BERBANTUAN AI GEMINI TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN PEMECAHAN MASALAH PADA MATA KULIAH HIDRODINAMIKA. Jurnal Kumparan Fisika, 8(3), 105–116. https://doi.org/10.33369/jkf.8.3.105-116

References

  1. Ratnawati OA, Rizaldi M, Hamdani M, Artuti E. Penggunaan ChatGPT Terhadap Berpikir Kritis Mahasiswa Dalam Menyelesaikan Masalah Geometri Analitik Ruang. Equal J Ilm Pendidik Mat [Internet]. 2024;7(2):105–18. Available from: s://ejournals.umma.ac.id/indeks.php/equals
  2. Sitorus M, Murti MDF, Sitorus M. ANALISIS PENGARUH PENGGUNAAN ARTIFICIAL INTELLIGENCE PADA PEMBELAJARAN DI CYBER. J ilmu komputer, Sist Inf Teknol Inf. 2024;1(2):90–101.
  3. Imran M, Almusharraf N. Google Gemini as a next generation AI educational tool: a review of emerging educational technology. Smart Learn Environ [Internet]. 2024;11(1). Available from: https://doi.org/10.1186/s40561-024-00310-z
  4. Zulfa FN, Rodiyah A, Ratnaningsih A. Penerapan Metode ADaBta dengan Pendekatan TaRL untuk Meningkatkan Kemampuan Literasi Dasar Murid Kelas II SDN Sokowaten. 2025;8(1):157–64.
  5. Sabrina E, Yulianti R, Rizal F. Mengeksplor Dampak Interaksi Siswa dengan ChatGPT terhadap Berpikir Kritis dan Pemecahan Masalah. Indones J Comput Sci. 2024;13(1):4875–83.
  6. Hake RR. Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. Am J Phys. 1998;66(1):64–74.
  7. Novitasari KWA. Analisis Keterampilan Berpikir Kritis Menurut Indikator Facione Pada Pembelajaran Kimia Daring Dan Luring. J Sains Ris. 2023;13(3):839–49.
  8. Purbaningrum KA. Kemampuan Berpikir Tingkat Tinggi Siswa Smp Dalam Pemecahan Masalah Matematika Ditinjau Dari Gaya Belajar. J Penelit dan Pembelajaran Mat. 2017;10(2):40–9.
  9. Facione PA. Critical Thinking : What It Is and Why It Counts. 1998;
  10. Fauzi A, Ermiana I, Nur A, Rosyidah K, Sobri M. The Effectiveness of Case Method Learning in View of Students ’ Critical Thinking Ability. Pendagogia J Pendidik. 2023;6(1):16–33.
  11. Bao L. Theoretical comparisons of average normalized gain calculations. Am J Phys. 2006;10(74):917–22.
  12. Kintoko, Wulandari S, Siswanto DH. Analysis of Mathematical Critical Thinking Skills Based on Students ’ Learning Styles in Junior High School. J Instr Math. 2025;6(1):1–13.
  13. Munazad L, Wilujeng I, Rahmawati L. Profile of Critical Thinking Ability of Class VIII MTs Students in Hulu Sungai Utara Regency on Respiratory System Material. J Biol dan Pembelajaranya [Internet]. 2025;23(2):343–51. Available from: bioedukasi.jurnal.unej.ac.id/index.php/BIOED/submission
  14. Muhammad MDP, Ernest IZ, Rokhman MAN, Wilujeng I, Rejeki S. Analysis of Students ’ Critical Thinking Ability Through Science E-Module Learning Based Google Sites. J Penelit Pembelajaran Fis. 2023;9(6):4658–65.
  15. Hake RR. Interactive-engagement versus traditional methods : A six-thousand-student survey of mechanics test data for introductory physics courses Interactive-engagement versus traditional methods : A six-thousand-student survey of mechanics test data for introductory physics courses. 2009;64(1998).
  16. Sitompul A, Sinulingga K, Bunawan W. Jurnal Pendidikan Fisika. J Pendidik Fis. 2025;14(1):13–26.
  17. Jonassen DH. Learning to Solve Problems. London: Taylor & Francis Group; 2011.
  18. Anwar C, Saregar A, Yuberti, Zellia N, Widyanti, Diani R, et al. Effect Size Test of Learning Model ARIAS and PBL : Concept Mastery of Temperature and Heat on Senior High School Students. Eurasia J Math Sci Technol Educ. 2019;15(3):1–9.
  19. Hake RR. Interactive-engagement versus traditional methods : A six-thousand-student survey of mechanics test data for introductory physics courses. Am J Phys. 2009;64(1998):64–74.
  20. Missingham D, Shah S, Sabir F. Student engineers optimising problem solving and research skills. J Univ Teach Learn Pract [Internet]. 2018;15(4). Available from: https://ro.uow.edu.au/jutlp/vol15/iss4/8
  21. Docktor JL, Dornfeld J, Frodermann E, Heller K, Hsu L, Jackson KA, et al. Assessing student written problem solutions : A problem-solving rubric with application to introductory physics. Phys Rev Phys Educ Res. 2016;010130(12):1–18.