Main Article Content

Abstract

This study aims to identify the relationship between the level of metacognitive skills and the performance of form four students in solving mathematical problems at Sekolah Menengah Kebangsaan Keratong, Bandar Tun Razak, Pahang. This correlational study involves 33 students from three classes selected as the study sample using convenience sampling techniques. Data were collected through questionnaires and a mathematical problem-solving test, then analyzed using descriptive and Pearson correlation statistical methods. The instruments used demonstrated a high level of validity, with a Content Validity Index (CVI) of 1.00 as assessed by four experts. Additionally, a pilot study showed that the instruments had high reliability, as evidenced by Cronbach’s Alpha value of 0.89. The analysis revealed that students' overall metacognitive skill levels were high (M = 2.99, SD = 0.67). However, students' performance in solving mathematical problems was very low, with an average score of 34.47%. The findings also indicated a moderate and significant relationship between students’ metacognitive skill levels and their performance in solving mathematical problems (r = 0.43, p < 0.05). In conclusion, students with higher metacognitive skills tend to perform better in solving mathematical problems. The study highlights the need to incorporate metacognitive elements comprehensively into the mathematics curriculum to improve student performance, particularly in Mathematics.

Keywords

Metacognitive Skills Mathematics Problem-Solving Secondary School Students Mathematics Achievement

Article Details

How to Cite
Roslan, M. A. F., Adenan, N. H., Tho, S. W., & Zeng, Z. (2025). THE RELATIONSHIP BETWEEN THE LEVEL OF METACOGNITIVE SKILLS AND THE LEVEL OF PERFORMANCE IN SOLVING MATHEMATICAL PROBLEMS AMONG FORM FOUR STUDENTS. Jurnal Penelitian Pembelajaran Matematika Sekolah (JP2MS), 9(3), 352–364. https://doi.org/10.33369/jp2ms.9.3.352-364

References

  1. Abdelrahman, R. (2020). Metacognitive awareness and academic achievement. Heliyon, 6(9), e04192. https://doi.org/10.1016/j.heliyon.2020.e04192
  2. Abdullah, A., Rahman, S., & Hamzah, M. (2017). Metacognitive skills of Malaysian students in non-routine mathematical problem solving. Bolema: Boletim de Educação Matemática, 31(57), 310–322. https://doi.org/10.1590/1980-4415v31n57a15
  3. Arsuk, S., & Memnun, D. S. (2020). The effect of problem-solving strategy instruction supported by metacognitive strategies on seventh-grade students’ problem-solving success and metacognitive skills. Journal of Social Sciences of Mus Alparslan University, 8(2), 559–573. https://doi.org/10.18506/anemon.634989
  4. Chew, F. P., & Masingan, N. J. (2021). Pengetahuan, sikap dan kesediaan pelajar terhadap kemahiran berfikir aras tinggi dalam kemahiran menulis. Pendeta Journal of Malay Language, Education and Literature, 12(2), 29–43. https://doi.org/10.37134/pendeta.vol12.2.3.2021
  5. Concina, E. (2019). The role of metacognitive skills in music learning and performing: Theoretical features and educational implications. Frontiers in Psychology, 10, 1583. https://doi.org/10.3389/fpsyg.2019.01583
  6. Desoete, A., & Roeyers, H. (2006). Metacognitive macroevaluations in mathematical problem solving. Learning and Instruction, 16(1), 12–25. https://doi.org/10.1016/j.learninstruc.2005.12.003
  7. Du, Z., Wang, B., He, J., & Zhang, H. (2023). Brief pain inventory and pain detection questionnaire based on WeChat and paper versions: Validity and reliability for herpes zoster–induced neuralgia. Medicine, 102(32), e34542. https://doi.org/10.1097/MD.0000000000034542
  8. Fraenkel, J. R., & Wallen, N. E. (2005). How to design and evaluate research in education. McGraw-Hill.
  9. Gomez, J., Patino, J., Duque, J., & Passos, S. (2019). Spatiotemporal modeling of urban growth using machine learning. Remote Sensing, 12(1), 109. https://doi.org/10.3390/rs12010109
  10. Güner, P., & Erbay, H. N. (2021). Metacognitive skills and problem-solving. International Journal of Research in Education and Science, 715–734. https://doi.org/10.46328/ijres.1594
  11. Gurat, M. G. (2018). Mathematical problem-solving strategies among student teachers. Journal on Efficiency and Responsibility in Education and Science, 11(3), 53–64. https://doi.org/10.7160/eriesj.2018.110302
  12. Hamzah, M. S. G., Paim, L., Haron, S. H., & Abdullah, M. F. N. L. (2013). Buku panduan pembinaan instrumen “Anda dan Kepenggunaan”. Emeritus Publications.
  13. Hasrin, N., & Maat, S. M. (2022). Kebimbangan dan kepercayaan matematik serta hubungan dengan pembelajaran matematik. Malaysian Journal of Social Sciences and Humanities, 7(4), e001437. https://doi.org/10.47405/mjssh.v7i4.1437
  14. Hinojosa, L. M. M., Rodriguez, M. C., & Paez, C. A. O. (2020). Measurement of metacognition: Adaptation of metacognitive state inventory in Spanish. European Journal of Educational Research, 9(1), 413–421. https://doi.org/10.12973/eu-jer.9.1.413
  15. Idris, N., Abdullah, N., & Sembak, S. (2015). Kesedaran metakognisi dan pemahaman konsep dalam penyelesaian masalah matematik. Jurnal Pendidikan Sains & Matematik Malaysia, 5(2), 23–40. https://ejournal.upsi.edu.my/index.php/JPSMM/article/view/2149/1770
  16. Incebacak, B., & Ersoy, E. (2016). Problem-solving skills of secondary school students. China-USA Business Review, 15(6). https://doi.org/10.17265/1537-1514/2016.06.002
  17. Karnain, T., Bakar, M. N., Siamakani, S. Y., Mohammadikia, H., & Candra, M. (2014). Exploring metacognitive skills used during problem posing. Jurnal Teknologi, 67(1). https://doi.org/10.11113/jt.v67.1847
  18. Lee, J. H., Abdullah, F. A. P., & Bunyamin, M. A. H. (2013). Aplikasi konsep fizik dalam menyelesaikan masalah STEM bagi pelajar tingkatan enam atas. In Proceedings of the 2nd International Seminar on Quality and Affordable Education (pp. 470–481).
  19. Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem solving in mathematics education. ICME-13 Topical Surveys. https://doi.org/10.1007/978-3-319-40730-2
  20. Loh, M. Y., & Lee, N. H. (2019). Evaluating metacognitive strategies in mathematical problem solving. In ICME-13 Monographs (pp. 155–176). https://doi.org/10.1007/978-3-030-10472-6_8
  21. Lunenburg, F., & Irby, B. (2008). Quantitative research designs. https://doi.org/10.4135/9781483329659.n3
  22. Mahmud, M. S., Yunus, A. S. M., Ayub, A. F. M., & Sulaiman, T. (2020). Enhancing mathematical language through oral questioning. International Journal of Learning, Teaching and Educational Research, 19(5), 395–410. https://doi.org/10.26803/IJLTER.19.5.24
  23. Martinez, M., & Bartholomew, M. (2017). Interpreting and calculating means and standard deviations. Pharmaceutics, 9(2), 14. https://doi.org/10.3390/pharmaceutics9020014
  24. Mcloughlin, C., & Hollingworth, R. (2001). The weakest link: Web-based learning and metacognition. In Proceedings of the 18th Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education.
  25. Mohamad, N. A., & Mahamod, Z. (2014). Tahap kemahiran metakognitif murid tingkatan empat. Malay Language Education Journal, 4(1), 41–47. https://spaj.ukm.my/jpbm/index.php/jpbm/article/view/73
  26. Mohd Khalid, F. A., Rozaimi, N. N., & Taha, H. (2020). Metacognitive behaviour of Form Four students in problem solving. Journal of Science and Mathematics Letters, 8(2), 74–85. https://doi.org/10.37134/jsml.vol8.2.10.2020
  27. Moreno, L., Briñol, P., & Petty, R. E. (2021). Metacognitive confidence and academic performance. Metacognition and Learning, 17(1), 139–165. https://doi.org/10.1007/s11409-021-09270-y
  28. O’Neil, H. F., & Abedi, J. (1996). Reliability and validity of a state metacognitive inventory. Journal of Educational Research, 89(4), 234–245. https://doi.org/10.1080/00220671.1996.9941208
  29. Omar, M. F., & Abdul Karim, A. (2022). Kemahiran penyelesaian masalah matematik berayat. Malaysian Journal of Social Sciences and Humanities, 7(12), e002010. https://doi.org/10.47405/mjssh.v7i12.2010
  30. Price, O., & Lovell, K. (2018). Quantitative research design. https://doi.org/10.7765/9781526136527.00008
  31. Ramadhanti, D., Ghazali, A. S., Hasanah, M., & Harsiati, T. (2019). Students’ metacognitive weaknesses in academic writing. International Journal of Emerging Technologies in Learning, 14(11), 41–57. https://doi.org/10.3991/ijet.v14i11.10213
  32. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864
  33. Sihotang, R. K., & Hutagalung, E. (2020). Metacognition skills of gifted students. Journal of Physics: Conference Series, 1521, 032017. https://doi.org/10.1088/1742-6596/1521/3/032017
  34. Singh, P. (2013). P value, statistical significance and clinical significance. Journal of Clinical and Preventive Cardiology, 2(4), 202–206. https://www.jcpcarchives.org/full/p-value-statistical-significance-and-clinical-significance-121.php
  35. Stanton, J. D., Sebesta, A. J., & Dunlosky, J. (2021). Fostering metacognition to support learning. CBE—Life Sciences Education, 20(2), fe3. https://doi.org/10.1187/cbe.20-12-0289
  36. Stratton, S. J. (2021). Convenience sampling strategies. Prehospital and Disaster Medicine, 36(4), 373–374. https://doi.org/10.1017/s1049023x21000649
  37. Wan Jaafar, W. N., & Maat, S. M. (2020). Motivasi dan pencapaian matematik murid luar bandar. Jurnal Pendidikan Sains dan Matematik Malaysia, 10(1), 39–48. https://doi.org/10.37134/jpsmm.vol10.1.5.2020
  38. Zakaria, E., & Zaini, N. (2009). Conceptual and procedural knowledge of rational numbers in trainee teachers. European Journal of Social Sciences, 9(2), 202–217.
  39. Zan, R. (2000). A metacognitive intervention in mathematics at university level. International Journal of Mathematical Education in Science and Technology, 31(1), 143–150. https://doi.org/10.1080/002073900287462