Main Article Content

Abstract

This study aims to evaluate the effect of the addition of Effective Microorganisms-4 (EM4) on changes in the proximate composition of palm oil solids during the fermentation process. The study design used EM4 treatments with different concentrations (0%, 0.5%, 1.0%, and 1.5% stored for 14 days. The parameters observed included moisture, ash, protein, fat, and crude fiber content. The results showed that moisture and ash content tended to decrease with increasing EM4 concentration and fermentation time. Protein content decreased significantly in the EM4 treatment compared to the control, indicating the utilization of organic nitrogen by microorganisms. Conversely, fat content increased in the 1.5% EM4 treatment, presumably due to the activity of lipolytic enzymes and microbial lipid biosynthesis. Crude fiber content showed a decreasing trend in the EM4 treatment, reflecting the degradation of cellulose and lignin by cellulolytic enzymes. Overall, the addition of EM4 can improve the nutritional quality of palm oil solids by reducing crude fiber and complex proteins and increasing the fat fraction at certain concentrations, so it has the potential to be used as an alternative feed ingredient for poultry

Keywords

EM4 Fermentation Feed Palm Oil Solids

Article Details

References

  1. Abdullah N, Liang J B, & Hassan O A. (2018). The effect of fungal treatment on nutritional composition and in vitro digestibility of oil palm fronds. Animal Feed Science and Technology, 144(1-2), 200-210.
  2. Awoh, E. T., Kiplagat, J., Kimutai, S. K., & Mecha, A. C. (2023). Current trends in palm oil waste management: A comparative review of Cameroon and Malaysia. Heliyon, 9(11).
  3. Badan Pusat Statistik (BPS) Provinsi Bengkulu. (2023). Provinsi Bengkulu Dalam Angka 2023. BPS Provinsi Bengkulu.
  4. Efendi R, Arifin J, & Saputra E. (2020). Potensi Limbah solid sawit sebagai bahan pakan alternatif ternak. Jurnal Peternakan Indonesia, 22(1):45-52.
  5. Halimah, S. N., Mansyur, & Gopar, R. A. (2024). Fermentasi pelepah sawit dengan bakteri asam laktat: Lactobacillus plantarum dan Pediococcus pentosaceus. Agrivet : Jurnal Ilmu-Ilmu Pertanian dan Peternakan, 12(2), 309-314.
  6. Hassan Z.A, &Jassim A.N. (2019). Application of cellulolytic fungi Trichoderma reesei to improve fibrous feed digestibility for poultry. International Journal of Poultry Science, 18(5), 250-255.
  7. Latif I.A, Zakaria Z.A, Jelan Z.A, & Liang J.B. (2022). Utilization of palm oil solid waste in poultry feed: effects on performance and egg quality. Journal of Animal Nutrition and Feed Technology. 22(1), 15-22.
  8. Li, H., Chen, Y., Wang, X., & Zhang, Z. (2024). Effect of microbial inoculum on composting efficiency in the composting process of spent mushroom substrate and chicken manure. Journal of Environmental Management, 353(7), 120145.
  9. Mironov, V., Zhukov, V., Efremova, K., & Brinton, W. F. (2024). Enhancing aerobic composting of food waste by adding hydrolytically active microorganisms. Frontiers in Microbiology, 15, 1367210.
  10. Nuswantara, K. L., Sunarso, S., Arifin, M., & Setiadi, A. (2020). Komponen serat sabut kelapa yang difermentasi menggunakan mikroba pencerna serat dari rumen kerbau. Jurnal Agripet, 20(1), 1–8.
  11. Patrechia, O., Murcitro, B. G., Muktamar, Z., Hasanudin, & Barchia, M. F. (2024). Perbandingan kadar total karbon dan nitrogen pada kompos dari berbagai macam jenis gulma, Jurnal Ilmu-Ilmu Pertanian Indonesia, 26(2), 97-104.
  12. Prasetyo, A. B., Tampoebolon, B. I. M., & Nuswantara, L. K. (2022). Kandungan serat kasar, kecernaan serat kasar, dan fermentabilitas bonggol singkong yang difermentasi menggunakan Aspergillus niger. Jurnal Agripet, 22(2), 202-212.
  13. Rahman M.M, Abdullah N., & Liang J.B. (2020). Fermentation of agricultural by-products for livestock feed: Nutritional improvement and effects on performance. Tropical Animal Health and Production. 52(1), 13-25.
  14. Saputra D., & Febrina D. (2022). Improvement of nutritional quality of palm kernel cake through fermentation using probiotic bacteria for poultry feed. Jurnal Ilmu dan Teknologi Peternakan Indonesia. 17(2), 85-92.
  15. Sari P. & Yulianto A.B. (2021). Nutritional evaluation of palm oil solid waste and its utilization in poultry ration. Indonesian Journal of Animal Science and Technology. 13(3), 130-137.
  16. Sinuraya, L. I. B., Sadeli, A., & Hasnudi. (2022). Effect of fermentation duration and dosage of EM4 on maturity level and quality of fermented compost fertilizer. Jurnal Peternakan Integratif, 10(01), 40-48.
  17. Siregar A.R, & Ginting S.P. (2019). Potential of palm oil by-products as livestock feed in Indonesia. Buletin Peternakan, 43(1), 47-56.
  18. Suhendar, D., Layly, I. R., Sabbathini, G. C., Waltam, D. R., Wahjono, E., Sriherwanto, C., & Haniyya, H. (2023). Mutation of lipase-producing bacterial isolate from palm oil effluent for fat hydrolysis on POME. Jurnal Bioteknologi dan Biosains Indonesia, 10(1), 11-21.
  19. Surbakti T., Simanungkalit D., & Sembiring J. (2021). Perbaikan nilai nutrisi limbah sawit melalui proses fermentasi untuk pakan ternak. Jurnal Agroekoteknologi Tropika, 10(1), 22-30.
  20. Wahyudi T., Prasetyo L.B., & Handayani E. (2021). Fermentasi limbah padat kelapa sawit sebagai alternatif pakan ternak ruminansia. Jurnal Ilmu Ternak dan Veteriner, 26(2), 112-120.
  21. Widjaja E. A., Tjitrosemito S., & Sutrisno B. (2006). Pengolahan limbah padat sawit untuk peningkatan nilai tambah. Buletin Teknik Pertanian. 11(2), 65-72.