Main Article Content

Abstract

Banyak peserta didik gagal dalam pembelajaran geometri molekul yang disebabkan oleh rendahnya kemampuan visuospasial. Penelitian ini membahas masalah tersebut dengan mengulas lebih dalam permasalahan yang dialami peserta didik dengan acuan tiga aspek dari kemampuan visospasial yakni aspek rotasi mental, orientasi spasial, dan visualisasi. Pengaplikasian kemampuan visuospasial dapat ditunjang dengan adanya media pembelajaran yang mampu untuk meningkatkan pemahaman peserta didik pada materi yang membutuhkan kemampuan visualisasi tinggi. Media visualisasi berbasis Mobile Virtual Reality (MVR) dibutuhkan sebagai tools edukasi dalam meningkatkan pemahamam peserta didik pada materi tertentu. Penelitian yang dilakukan bertujuan untuk mengetahui peningkatan hasil belajar peserta didik melalui pengaplikasian media visualisasi geometri molekul berbasis MVR. Desain pada peneliian ini adalah one group pretest-posttest design. Hasil penelitian menunjukkan bahwa peserta didik banyak memiliki masalah pada aspek visualisasi. Namun, setelah pengaplikasian kemampuan visuospasial pada media visualisasi geometri molekul berbasis MVR didapatkan hasil belajar dengan interpretasi N-gain dengan rentang sebesar 0.5-1 dengan kategori sedang sampai tertinggi. Penelitian ini memastikan bahwa adanya peningkatan dari hasil belajar peserta didik setelah pengaplikasian kemampuan visuospasial pada media visualisasi geometri molekul berbasis MVR.

Article Details

Author Biographies

Ainun Nisa, Universitas Negeri Surabaya

Departemen of Chemistry Education

Kusumawati Dwiningsih, Universitas Negeri Surabaya

Dosen Pendidikan Kimia
How to Cite
Nisa, A., & Dwiningsih, K. (2021). Analisis Hasil Belajar Peserta Didik Melalui Media Visualisasi Geometri Molekul Berbasis Mobile Virtual Reality (MVR). PENDIPA Journal of Science Education, 6(1), 135–142. https://doi.org/10.33369/pendipa.6.1.135-142

References

  1. Adiska, D. N., Liliasari, L., & Musthapa, I. (2020). Use Of 3d-Visualization Media In Nucleophilic Substitution Reaction Material To Improve Students’ Concept Mastery. JTK (Jurnal Tadris Kimiya), 5(2), 213–219. https://doi.org/10.15575/jtk.v5i2.9820.
  2. Adytia, P. F., & Dwiningsih, K. (2018). Developing Student Worksheet Oriented to Science Literacy in Chemical Bonding Matter to Train Student’s Science Literacy Ability in Senior High School. In atlantis-press.com. https://www.atlantis-press.com/proceedings/snk-18/25904379
  3. Aini, A. N., Mukhlis, M., Annizar, A. M., Jakaria, M. H. D., & Septiadi, D. D. (2020). Creative thinking level of visual-spatial students on geometry HOTS problems. Journal of Physics: Conference Series, 1465, 12054. https://doi.org/10.1088/17426596/1465/1/012054
  4. Ainyn, Q., & Dwiningsih, K. (2021). Multimedia Interaktif dengan Penstimulasian Intelegensi Visual Spasial pada submateri Ikatan Kovalen. JRPK: Jurnal Riset Pendidikan Kimia, 10(2), 132–138. https://doi.org/10.21 009/jrpk.102.09
  5. Apecawati, L. D., Sahputra, R., Hadi, L., & Kimia, P. (2015). Hubungan Kecerdasan Visual-Spasial Dengan Kemampuan. 2008, 1–11.
  6. Bernholt, S., Broman, K., Siebert, S., & Parchmann, I. (2019). Digitising Teaching and Learning – Additional Perspectives for Chemistry Education. Israel Journal of Chemistry, 59(6), 554–564. https://doi.org/ 10.1002/ijch.201800090
  7. Cole, M., Cohen, C., Wilhelm, J., & Lindell, R. (2018). Spatial thinking in astronomy education research. Physical Review Physics Education Research, 14(1), 10139. https://doi.org/10.1103/PhysRevPhysEducRes.14.010139
  8. Donaghy, K. J., & Saxton, K. J. (2012). Connecting Geometry and Chemistry: A Three-Step Approach to Three-Dimensional Thinking. ACS Publications, 89(7), 917–920. https://doi.org/10.1021/ed200345w
  9. Fung, F. M., Choo, W. Y., Ardisara, A., Zimmermann, C. D., Watts, S., Kosc ielniak, T., Blanc, E., Coumoul, X., & Dumke, R. (2019). Applying a Virtual Reality Platform in Environmental Chemis try Education to Conduct a Field Trip to an Overseas Site. Journal of Chemical Education, 96(2), 382–386. https://doi.org/10.1021/acs.jchemed.8b 00728
  10. Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809
  11. Harle, M., & Towns, M. (2011). A review of spatial ability literature, its connection to chemistry, and implications for instruction. In Journal of Chemical Education (Vol. 88, Issue 3, pp. 351–360). https://doi.org/10.1 021/ed900003n
  12. Ilyasa, Deiya Gama. & Dwiningsih, K. (2020). Model Multimedia Interaktif Berbasis Unity Untuk Meningkatkan Hasil Belajar Ikatan Ion. Jurnal Inovasi Pendidikan Kimia, 14(2), 2572–2584.
  13. Jonathan Clayden et al. 2001. Organic chemistry. Oxford University Press.
  14. Mardiyah, H., Nonawati, & Fauzi. (2017). Hubungan Kecerdasa Spasial Terhadap Hasil Belajar Matematika Materi Bangun Ruag Siswa Kelas 5 SD Negeri 5 Banda Aceh. Jurnal Ilmiah Pendidikan Guru Sekolah Dasar FKIP Unsyiah, 2(1), 48–60. http://www.jim.unsyiah.ac.id/pgsd/article/view/4393
  15. Marinda, L. (2020). Teori Perkembangan Kognitif Jean Piaget Dan Problematikanya Pada Anak Usia Sekolah Dasar. An-Nisa’ : Jurnal Kajian Perempuan Dan Keislaman, 13(1), 116–152. https://doi.org/10.35719/annisa.v1 3i1.26
  16. Meyer, O. A., Omdahl, M. K., & Makransky, G. (2019). Investigating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment. Computers and Education, 140(December 2018), 103603. https://doi.org/10.1016/j.compedu.2019.103603
  17. Pietikäinen, O. (2018). VRChem: A molecular modeling software for Virtual Re-ality. Finland.
  18. Revita, R. (2017). Validitas Perangkat Pembelaj aran Matematika Berbasis Penemuan Terbimbing. Suska Journal of Mathematics Education, 3(1), 15. https://doi.org/10.2401 4/sjme.v3i1.3425
  19. Roca-González, C., Martin-Gutierrez, J., García-Dominguez, M., & Carrodeguas, M. del C. M. (2017). Virtual technologies to develop visual-spatial ability in engineering students. Eurasia Journal of Mathematics, Science and Technology Education, 13(2), 441–468. https://doi.org/10.12973/eurasia.2017.00625a
  20. Sabekti, A. W., Widarti, H. R., & Mahmudi. (2014). Analisis Pemahaman Konsep Siswa Kelas XI IPA SMAN 1 Malang Pada Topik Bentuk Molekul. Jurnal Zarah, 2(1). http://ojs.umrah.ac.id/index.php/zarah/article/view/24
  21. Saker, M., & Frith, J. (2019). From hybrid space to dislocated space: Mobile virtual reality and a third stage of mobile media theory. New Media and Society, 21(1), 214–228. https://doi.org/10.1177/1461444818792407
  22. Sakinah, N. A., & Dwiningsih, K. (2018). Pengembangan Multimedia Interaktif berbasis Blended Learning pada Materi Larutan Elektrolit dan Non Elektrolit. Unesa Journal of Chemical Education, 7(2), 143–153. https://jurnalmahasiswa.unesa.ac.id/ind ex.php/journal-of-chemical-education/articl e/view/23888
  23. Samon, S., & Levy, S. T. (2020). Interactions between reasoning about complex systems and conceptual understanding in learning chemistry. Journal of Research in Science Teaching, 57(1), 58–86. https://doi.org/10. 1002/tea.21585
  24. Setyarini, M., Kadarohman, A., & Kimia-itb, D. (2010). The Effectiveness Of Stereochemistry Based On 3d Visualization. Jurnal Cakrawala Pendidi kan, 36(1), 91–101.
  25. Sugiyono. 2013. Meode Penelitian Kuantitatif, Kualitatif, dan R & D. Bandung: Alfabeta.
  26. Sujak, K. B., Gnanamalar, E., & Daniel, S. (2018). Understanding of Macroscopic, Microscopic and Symbolic Representations Among Form Four Students in Solving Stoichiometric Problems. MOJES: Malaysian Online Journal of Educational Sciences, 5(3), 83–96. www.moj-es.net
  27. Taber, K. S. (2017). Identificando los enfoques de investigación para que la educación química progrese como un campo de estudio. Educacion Quimica, 28(2), 66–73. https://doi.org/10.1016/j.eq.2016.12.001
  28. Tuvi-Arad, I., & Blonder, R. (2019). Technology in the Service of Pedagogy: Teaching with Chemistry Databases. Israel Journal of Chemistry, 59(6), 572–582. https://doi.org/ 10.1002/ijch.201800076
  29. Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. In Science Education (Vol. 88, Issue 3, pp. 465–492). John Wiley & Sons, Ltd. https://doi.org/10.1002/sce.10126
  30. Yuliyanto, A., Abdul, R., Muqodas, I., Wulandari, H., & Mifta, D. (2020). Alternative Learning of the Future Based on Verbal-Linguistic, and Visual-Spatial Intelligence Through Youtube-Based Mind Map When Pandemic Covid-19. Jurnal JPSD (Jurnal Pendidikan Sekolah Dasar), 7(2), 132–141. https://doi.org/10.12928/jps d.v7i2.16925