Main Article Content
Abstract
Gold silica nanocomposite-based biosensors are performing well in sensor technology for biosensor development. Due to this biosensor has good selectivity, excellent conductivity, large surface area, efficient enhancement of electron transfer between enzymes and electrodes and good biocompatibility. Therefore, gold silica nanocomposite can be an ideal matrix for immobilization of biomolecules. This review describes the method of synthesizing gold silica nanocomposites and their characterization, interaction with biomolecules and application of gold silica nanocomposites in electrochemical biosensors.
Article Details
The journal allows the author(s) to hold the copyright without restrictions.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Argoubi, W., Sánchez, A., Parrado, C., Raouafi, N., & Villalonga, R. (2018). Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sensors and Actuators, B: Chemical, 255, 309–315. https://doi.org/10.1016/j.snb.2017.08.045
- Ariffin, E. Y., Heng, L. Y., Tan, L. L., Karim, N. H. A., & Hasbullah, S. A. (2020). A highly sensitive impedimetric DNA biosensor based on hollow silica microspheres for label-free determination of E. Coli. Sensors (Switzerland), 20(5). https://doi.org/10.3390/s20051279
- Bagheri, E., Ansari, L., Sameiyan, E., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2020). Sensors design based on hybrid gold-silica nanostructures. Biosensors and Bioelectronics, 153, 1–11. https://doi.org/10.1016/j.bios.2020.112054
- Bai, Y., Yang, H., Yang, W., Li, Y., & Sun, C. (2007). Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors and Actuators, B: Chemical, 124(1), 179–186. https://doi.org/10.1016/j.snb.2006.12.020
- Carrasquilla, C., Xiao, Y., Xu, C. Q., Li, Y., & Brennan, J. D. (2011). Enhancing sensitivity and selectivity of long-period grating sensors using structure-switching aptamers bound to gold-doped macroporous silica coatings. Analytical Chemistry, 83(20), 7984–7991. https://doi.org/10.1021/ac2020432
- Ciaurriz, P., Fernández, F., Tellechea, E., Moran, J. F., & Asensio, A. C. (2017). Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA). Beilstein Journal of Nanotechnology, 8(1), 244–253. https://doi.org/10.3762/bjnano.8.27
- Eddy, D. R., Puri, F. N., & Noviyanti, A. R. (2015). Synthesis and Photocatalytic Activity of Silica-based Sand Quartz as the Supporting TiO2 Photocatalyst. Procedia Chemistry, 17, 55–58. https://doi.org/10.1016/j.proche.2015.12.132
- Famia, A. M., & Muldarisnur, M. (2019). Pengaruh Temperatur Sintesis Hidrotermal Terhadap Diameter Nanopartikel Seng Oksida. Jurnal Fisika Unand, 8(2), 127–132. https://doi.org/10.25077/jfu.8.2.127-132.2019
- Firdaus, M. L., Madina, F. E., Sasti, Y. F., Elvia, R., Ishmah, S. N., Eddy, D. R., & Cid-Andres, A. P. (2020). Silica extraction from beach sand for dyes removal: Isotherms, kinetics and thermodynamics. Rasayan Journal of Chemistry, 13(1), 249–254. https://doi.org/10.31788/RJC.2020.1315496
- Graczyk, A., Pawlowska, R., Jedrzejczyk, D., & Chworos, A. (2020). Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules, 25(204), 1–26. https://doi.org/https://doi.org/10.3390/molecules25010204
- Hartati, Y. W., Gaffar, S., Alfiani, D., Pratomo, U., Sofiatin, Y., & Subroto, T. (2020). A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research, 29(April), 100343. https://doi.org/10.1016/j.sbsr.2020.100343
- Hasanzadeh, M., Shadjou, N., Eskandani, M., & Guardia, M. de la. (2012). Mesoporous silica-based materials for use in electrochemical enzyme nanobiosensors. TrAC - Trends in Analytical Chemistry, 40, 106–118. https://doi.org/10.1016/j.trac.2012.06.007
- Hashkavayi, A. B., Raoof, J. B., & Ojani, R. (2017). Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan. Analytical and Bioanalytical Chemistry, 409(27), 6429–6438. https://doi.org/10.1007/s00216-017-0588-z
- Khalilzadeh, B., Charoudeh, H. N., Shadjou, N., Mohammad-Rezaei, R., Omidi, Y., Velaei, K., Aliyari, Z., & Rashidi, M. R. (2016). Ultrasensitive caspase-3 activity detection using an electrochemical biosensor engineered by gold nanoparticle functionalized MCM-41: Its application during stem cell differentiation. Sensors and Actuators, B: Chemical, 231, 561–575. https://doi.org/10.1016/j.snb.2016.03.043
- Liu, B., Zhang, B., Cui, Y., Chen, H., Gao, Z., & Tang, D. (2011). Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS Applied Materials and Interfaces, 3(12), 4668–4676. https://doi.org/10.1021/am201087r
- Mahon, E., Salvati, A., Baldelli Bombelli, F., Lynch, I., & Dawson, K. A. (2012). Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery.” Journal of Controlled Release, 161(2), 164–174. https://doi.org/10.1016/j.jconrel.2012.04.009
- Mebert, A. M., Baglole, C. J., Desimone, M. F., & Maysinger, D. (2017). Nanoengineered silica: Properties, applications and toxicity. Food and Chemical Toxicology, 109, 753–770. https://doi.org/10.1016/j.fct.2017.05.054
- Ojea-Jimenez, I., & Puntes, V. (2010). Instability of cationic gold nanoparticle bioconjugates: The role of citrate ions (Journal of the American Chemical Society (2009) 131 (13320-13327)). Journal of the American Chemical Society, 132(14), 5322. https://doi.org/10.1021/ja101213s
- Rajabnejad, S. H., Badibostan, H., Verdian, A., Karimi, G. R., Fooladi, E., & Feizy, J. (2020). Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchemical Journal, 155, 104722. https://doi.org/10.1016/j.microc.2020.104722
- Rao, H., Wang, X., Du, X., & Xue, Z. (2013). Mini Review: Electroanalytical Sensors of Mesoporous Silica Materials. Analytical Letters, 46(18), 2789–2812. https://doi.org/10.1080/00032719.2013.816962
- Rashid, J. I. A., Yusof, N. A., Abdullah, J., Hashim, U., & Hajian, R. (2015). A Novel Disposable Biosensor Based on SiNWs/AuNPs Modified-Screen Printed Electrode for Dengue Virus DNA Oligomer Detection. IEEE Sensors Journal, 15(8), 4420–4421. https://doi.org/10.1109/JSEN.2015.2417911
- Shuai, H. L., Wu, X., Huang, K. J., & Zhai, Z. B. (2017). Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction. Biosensors and Bioelectronics, 94(March), 616–625. https://doi.org/10.1016/j.bios.2017.03.058
- Sun, J., Gan, T., Zhai, R., Fu, W., & Zhang, M. (2018). Sensitive and selective electrochemical sensor of diuron against indole-3-acetic acid based on core-shell structured SiO2@Au particles. Ionics, 24(8), 2465–2472. https://doi.org/10.1007/s11581-017-2367-4
- Tang, J., Tang, D., Niessner, R., Knopp, D., & Chen, G. (2012). Hierarchical dendritic gold microstructure-based aptasensor for ultrasensitive electrochemical detection of thrombin using functionalized mesoporous silica nanospheres as signal tags. Analytica Chimica Acta, 720, 1–8. https://doi.org/10.1016/j.aca.2011.12.070
- Wang, J., Guo, J., Zhang, J., Zhang, W., & Zhang, Y. (2017). RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosensors and Bioelectronics, 95, 100–105. https://doi.org/10.1016/j.bios.2017.04.014
- Yeh, Y. C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871–1880. https://doi.org/10.1039/c1nr11188d
- You, M., Yang, S., Tang, W., Zhang, F., & He, P. (2018). Molecularly imprinted polymers-based electrochemical DNA biosensor for the determination of BRCA-1 amplified by SiO2@Ag. Biosensors and Bioelectronics, 112(December 2017), 72–78. https://doi.org/10.1016/j.bios.2018.04.038
- Yu, C., Fan, J., Tian, B., & Zhao, D. (2004). Morphology Development of Mesoporous Materials: A Colloidal Phase Separation Mechanism. Chemistry of Materials, 16(5), 889–898. https://doi.org/10.1021/cm035011g
- Zhang, H. X., Cao, A. M., Hu, J. S., Wan, L. J., & Lee, S. T. (2006). Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Analytical Chemistry, 78(6), 1967–1971. https://doi.org/10.1021/ac051826s
- Zhang, Z., Zhou, J., & Du, X. (2019). Electrochemical biosensors for detection of foodborne pathogens. Micromachines, 10(4). https://doi.org/10.3390/mi10040222
- Zhou, J., & Rossi, J. J. (2014). Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Molecular Therapy - Nucleic Acids, 3(March), 1–17. https://doi.org/10.1038/mtna.2014.21
References
Argoubi, W., Sánchez, A., Parrado, C., Raouafi, N., & Villalonga, R. (2018). Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sensors and Actuators, B: Chemical, 255, 309–315. https://doi.org/10.1016/j.snb.2017.08.045
Ariffin, E. Y., Heng, L. Y., Tan, L. L., Karim, N. H. A., & Hasbullah, S. A. (2020). A highly sensitive impedimetric DNA biosensor based on hollow silica microspheres for label-free determination of E. Coli. Sensors (Switzerland), 20(5). https://doi.org/10.3390/s20051279
Bagheri, E., Ansari, L., Sameiyan, E., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2020). Sensors design based on hybrid gold-silica nanostructures. Biosensors and Bioelectronics, 153, 1–11. https://doi.org/10.1016/j.bios.2020.112054
Bai, Y., Yang, H., Yang, W., Li, Y., & Sun, C. (2007). Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors and Actuators, B: Chemical, 124(1), 179–186. https://doi.org/10.1016/j.snb.2006.12.020
Carrasquilla, C., Xiao, Y., Xu, C. Q., Li, Y., & Brennan, J. D. (2011). Enhancing sensitivity and selectivity of long-period grating sensors using structure-switching aptamers bound to gold-doped macroporous silica coatings. Analytical Chemistry, 83(20), 7984–7991. https://doi.org/10.1021/ac2020432
Ciaurriz, P., Fernández, F., Tellechea, E., Moran, J. F., & Asensio, A. C. (2017). Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA). Beilstein Journal of Nanotechnology, 8(1), 244–253. https://doi.org/10.3762/bjnano.8.27
Eddy, D. R., Puri, F. N., & Noviyanti, A. R. (2015). Synthesis and Photocatalytic Activity of Silica-based Sand Quartz as the Supporting TiO2 Photocatalyst. Procedia Chemistry, 17, 55–58. https://doi.org/10.1016/j.proche.2015.12.132
Famia, A. M., & Muldarisnur, M. (2019). Pengaruh Temperatur Sintesis Hidrotermal Terhadap Diameter Nanopartikel Seng Oksida. Jurnal Fisika Unand, 8(2), 127–132. https://doi.org/10.25077/jfu.8.2.127-132.2019
Firdaus, M. L., Madina, F. E., Sasti, Y. F., Elvia, R., Ishmah, S. N., Eddy, D. R., & Cid-Andres, A. P. (2020). Silica extraction from beach sand for dyes removal: Isotherms, kinetics and thermodynamics. Rasayan Journal of Chemistry, 13(1), 249–254. https://doi.org/10.31788/RJC.2020.1315496
Graczyk, A., Pawlowska, R., Jedrzejczyk, D., & Chworos, A. (2020). Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules, 25(204), 1–26. https://doi.org/https://doi.org/10.3390/molecules25010204
Hartati, Y. W., Gaffar, S., Alfiani, D., Pratomo, U., Sofiatin, Y., & Subroto, T. (2020). A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research, 29(April), 100343. https://doi.org/10.1016/j.sbsr.2020.100343
Hasanzadeh, M., Shadjou, N., Eskandani, M., & Guardia, M. de la. (2012). Mesoporous silica-based materials for use in electrochemical enzyme nanobiosensors. TrAC - Trends in Analytical Chemistry, 40, 106–118. https://doi.org/10.1016/j.trac.2012.06.007
Hashkavayi, A. B., Raoof, J. B., & Ojani, R. (2017). Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan. Analytical and Bioanalytical Chemistry, 409(27), 6429–6438. https://doi.org/10.1007/s00216-017-0588-z
Khalilzadeh, B., Charoudeh, H. N., Shadjou, N., Mohammad-Rezaei, R., Omidi, Y., Velaei, K., Aliyari, Z., & Rashidi, M. R. (2016). Ultrasensitive caspase-3 activity detection using an electrochemical biosensor engineered by gold nanoparticle functionalized MCM-41: Its application during stem cell differentiation. Sensors and Actuators, B: Chemical, 231, 561–575. https://doi.org/10.1016/j.snb.2016.03.043
Liu, B., Zhang, B., Cui, Y., Chen, H., Gao, Z., & Tang, D. (2011). Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS Applied Materials and Interfaces, 3(12), 4668–4676. https://doi.org/10.1021/am201087r
Mahon, E., Salvati, A., Baldelli Bombelli, F., Lynch, I., & Dawson, K. A. (2012). Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery.” Journal of Controlled Release, 161(2), 164–174. https://doi.org/10.1016/j.jconrel.2012.04.009
Mebert, A. M., Baglole, C. J., Desimone, M. F., & Maysinger, D. (2017). Nanoengineered silica: Properties, applications and toxicity. Food and Chemical Toxicology, 109, 753–770. https://doi.org/10.1016/j.fct.2017.05.054
Ojea-Jimenez, I., & Puntes, V. (2010). Instability of cationic gold nanoparticle bioconjugates: The role of citrate ions (Journal of the American Chemical Society (2009) 131 (13320-13327)). Journal of the American Chemical Society, 132(14), 5322. https://doi.org/10.1021/ja101213s
Rajabnejad, S. H., Badibostan, H., Verdian, A., Karimi, G. R., Fooladi, E., & Feizy, J. (2020). Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchemical Journal, 155, 104722. https://doi.org/10.1016/j.microc.2020.104722
Rao, H., Wang, X., Du, X., & Xue, Z. (2013). Mini Review: Electroanalytical Sensors of Mesoporous Silica Materials. Analytical Letters, 46(18), 2789–2812. https://doi.org/10.1080/00032719.2013.816962
Rashid, J. I. A., Yusof, N. A., Abdullah, J., Hashim, U., & Hajian, R. (2015). A Novel Disposable Biosensor Based on SiNWs/AuNPs Modified-Screen Printed Electrode for Dengue Virus DNA Oligomer Detection. IEEE Sensors Journal, 15(8), 4420–4421. https://doi.org/10.1109/JSEN.2015.2417911
Shuai, H. L., Wu, X., Huang, K. J., & Zhai, Z. B. (2017). Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction. Biosensors and Bioelectronics, 94(March), 616–625. https://doi.org/10.1016/j.bios.2017.03.058
Sun, J., Gan, T., Zhai, R., Fu, W., & Zhang, M. (2018). Sensitive and selective electrochemical sensor of diuron against indole-3-acetic acid based on core-shell structured SiO2@Au particles. Ionics, 24(8), 2465–2472. https://doi.org/10.1007/s11581-017-2367-4
Tang, J., Tang, D., Niessner, R., Knopp, D., & Chen, G. (2012). Hierarchical dendritic gold microstructure-based aptasensor for ultrasensitive electrochemical detection of thrombin using functionalized mesoporous silica nanospheres as signal tags. Analytica Chimica Acta, 720, 1–8. https://doi.org/10.1016/j.aca.2011.12.070
Wang, J., Guo, J., Zhang, J., Zhang, W., & Zhang, Y. (2017). RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosensors and Bioelectronics, 95, 100–105. https://doi.org/10.1016/j.bios.2017.04.014
Yeh, Y. C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871–1880. https://doi.org/10.1039/c1nr11188d
You, M., Yang, S., Tang, W., Zhang, F., & He, P. (2018). Molecularly imprinted polymers-based electrochemical DNA biosensor for the determination of BRCA-1 amplified by SiO2@Ag. Biosensors and Bioelectronics, 112(December 2017), 72–78. https://doi.org/10.1016/j.bios.2018.04.038
Yu, C., Fan, J., Tian, B., & Zhao, D. (2004). Morphology Development of Mesoporous Materials: A Colloidal Phase Separation Mechanism. Chemistry of Materials, 16(5), 889–898. https://doi.org/10.1021/cm035011g
Zhang, H. X., Cao, A. M., Hu, J. S., Wan, L. J., & Lee, S. T. (2006). Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Analytical Chemistry, 78(6), 1967–1971. https://doi.org/10.1021/ac051826s
Zhang, Z., Zhou, J., & Du, X. (2019). Electrochemical biosensors for detection of foodborne pathogens. Micromachines, 10(4). https://doi.org/10.3390/mi10040222
Zhou, J., & Rossi, J. J. (2014). Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Molecular Therapy - Nucleic Acids, 3(March), 1–17. https://doi.org/10.1038/mtna.2014.21