Main Article Content

Abstract

As the world’s largest nickel producer, Indonesia faces critical challenges in decarbonizing its nickel smelting sector while maintaining economic growth. This study addresses the lack of integrated assessments of carbon pricing impacts and green finance mechanisms in Indonesia’s nickel industry, using exclusively secondary data from government reports (BPS, MEMR), global databases (IEA, Global Carbon Atlas), and policy documents. A gate-to-gate Life Cycle Assessment (ISO 14044) reveals that Indonesian nickel smelters emit 14.8 tons CO₂-eq per ton of product (IEA, 2023), 25% higher than the global average. Economic modeling, based on nickel price trends (LME, 2020–2023) and carbon tax scenarios, indicates that a $40/ton CO₂ tax would raise production costs by 15%, reducing export competitiveness by 6.2% under current market conditions. Policy analysis highlights the feasibility of green bonds and fiscal incentives for renewable energy adoption, referencing successful cases in the Philippines (RE Law, 2022). These findings provide a data-driven framework for aligning Indonesia’s nickel industry with its 2060 net-zero target, emphasizing the role of secondary data in shaping low-carbon transitions for resource-rich economies.

Keywords

Carbon Footprint Nickel Smelting Energy Transition Carbon Pricing Green Financing

Article Details

How to Cite
Sari, S. E. P., Sasongko, N. A., & Yoesgiantoro, D. (2025). Decarbonizing Indonesia’s Nickel Smelters: Implications for Energy Security, Carbon Pricing, and Green Finance Policies. PENDIPA Journal of Science Education, 9(3), 905–912. https://doi.org/10.33369/pendipa.9.3.905-912

References

  1. Aisyah, N., Sasongko, N. A., Nasruddin, N., & Ariyadi, H. M. (2024). Development of energy security definition and indexes for sustainable future: A systematic literature review. Journal of Physics: Conference Series, 2828(1), 012002. https://doi.org/10.1088/1742-6596/2828/1/012002
  2. Berthet, E., Lavalley, J., Anquetil-Deck, C., Ballesteros, F., Stadler, K., Soytas, U., Hauschild, M., & Laurent, A. (2024). Assessing the social and environmental impacts of critical mineral supply chains for the energy transition in Europe. Global Environmental Change, 86, 102841. https://doi.org/10.1016/j.gloenvcha.2024.102841
  3. Center for Research on Energy and Clean Air. (2024). Membantah mitos nilai tambah: Menilik ulang industri hilirisasi nikel. https://energyandcleanair.org/wp/wp-content/uploads/2024/02/CREA_CELIOS-Indonesia-Nickel-Development_ID.pdf
  4. DCCEEW. (2023). Australia’s critical minerals strategy: 2023 performance report. Department of Climate Change, Energy, the Environment and Water.
  5. DOE Philippines. (2023). Geothermal energy utilization in smelting sector. Department of Energy, Manila.
  6. Hasan, R., Miah, M. D., & Hassan, M. K. (2022). The nexus between environmental and financial performance: Evidence from Gulf Cooperative Council banks. Business Strategy and the Environment, 31(7), 2882–2907. https://doi.org/10.1002/bse.3053
  7. International Energy Agency. (2021). The role of critical minerals in clean energy transitions. IEA. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions
  8. Kirchherr, J. (2022). Green finance mechanisms in ASEAN. Journal of Cleaner Production, 381, 135178. https://doi.org/10.1016/j.jclepro.2022.135178
  9. Lahadalia, B., Wijaya, C., Dartanto, T., & Subroto, A. (2024). Nickel downstreaming in Indonesia: Reinventing sustainable industrial policy and developmental state in building the EV industry in ASEAN. Journal of ASEAN Studies, 12(1), 79–106. https://doi.org/10.21512/jas.v12i1.11128
  10. Lee, J., Kim, H., & Zhou, S. (2023). Carbon leakage in resource-based economies. Energy Economics, 115, 106372. https://doi.org/10.1016/j.eneco.2023.106372
  11. Ministry of Energy and Resources Mineral. (2025). Energy Resilience and Downstreaming. Jakarta.
  12. Ministry of National Development Planning. (2024). Indonesia’s Nickel Industry Decarbonization Roadmap: An input for RPJMN 2025-2029. Jakarta.
  13. Mulya, K. S., Zhou, J., Phuang, Z. X., Laner, D., & Woon, K. S. (2022). A systematic review of life cycle assessment of solid waste management: Methodological trends and prospects. Science of the Total Environment, 831, 154903. https://doi.org/10.1016/j.scitotenv.2022.154903
  14. OJK. (2023). Green bond market growth in Indonesia. Otoritas Jasa Keuangan, Jakarta.
  15. Ramadhan, A., Widodo, T. W., & Pratama, F. A. (2024). CCUS opportunities and fiscal reform in Indonesia’s industrial decarbonization roadmap. Kementerian ESDM dan Kementerian Keuangan Republik Indonesia.
  16. Sasongko, N. A., Azmi, U., Murtiana, S., & Anda, M. (2024). Trend of critical minerals utilization for Indonesia’s sustainable energy transition: A review. E3S Web of Conferences, 513, 04004. https://doi.org/10.1051/e3sconf/202451304004
  17. Schodde, R., & Guj, P. (2025). Nickel: A tale of two cities. Geosystems and Geoenvironment, 100356. https://doi.org/10.1016/j.geogeo.2025.100356
  18. Sulistiawati, L. Y., & Buana, L. (2023). Legal analysis on president regulation on carbon pricing in Indonesia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4337295
  19. Wahyono, Y., Sasongko, N. A., Trench, A., Anda, M., Hadiyanto, H., Aisyah, N., & Ariyanti, D. (2024). Assessing the impact of climate change and water scarcity of ferronickel production in Indonesia: A life cycle assessment approach. Sustainable Energy Technologies and Assessments, 67, 103835. https://doi.org/10.1016/j.seta.2024.103835
  20. Wahyono, Y., Sasongko, N. A., Trench, A., Anda, M., Hadiyanto, H., Aisyah, N., et al. (2024). Evaluating the impacts of environmental and human health of the critical minerals mining and processing industries in Indonesia using life cycle assessment. Case Studies in Chemical and Environmental Engineering, 10, 100944. https://doi.org/10.1016/j.cscee.2024.100944
  21. Wei, W., Samuelsson, P. B., Tilliander, A., Gyllenram, R., & Jönsson, P. G. (2020). Energy consumption and greenhouse gas emissions of nickel products. Energies, 13(21), 5664. https://doi.org/10.3390/en13215664