Main Article Content

Abstract

From the past until now, weed control using synthetic herbicides has remained the primary method. The use of synthetic herbicides in modern agricultural processes still has negative impacts on the environment, health, and weeds, thereby potentially causing weed resistance. Therefore, planting herbal bioherbicides is a more environmentally friendly method of weed control. Sorghum (Sorghum bicolor L. Moench), in particular, has allelopathic exudates that are very troublesome for weeds. This study focused on analyzing the chemical allelopathy of sorghum root extracts and identifying candidate bioherbicide compounds in the roots using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Sorghum was extracted using a cold maceration method obtained from a mixture of solvents with different configurations. Then, through GC-MS, the solvents were extracted, and the compounds were separated. As a result, through GC-MS analysis, 20 compounds were identified, most of which were detected in the steroid, sterol, and fatty acid derivative groups. The most prominent compounds detected were 4, 22-stigmastadien-3-one (20.74%); stigmasterol (total 16.47%); cholest-4-en-26-oic acid, 3-oxo- (11.68%); and 9-octadecenamide (Z) (7.69%). Several polar compounds, such as 9-octadecenamide (Z) and cyclohexanol derivatives, exhibited excellent capabilities. Therefore, sorghum root extract contains allelochemical compounds that have the potential to be sustainable and environmentally friendly bioherbicides.

Article Details

How to Cite
Susilo, E., Setyowati, N., Nurjanah, U., Pujiwati, H., & Riwandi. (2026). Profile of Allelochemical Compounds in Ratun Sorghum Root Extract Based on GC-MS Analysis as a Bioherbicide Candidate: Profil Senyawa Alelokimia Ekstrak Akar Ratun Sorgum Berdasarkan Analisis GC-MS sebagai Kandidat Bioherbisida. PENDIPA Journal of Science Education, 10(1), 211–222. https://doi.org/10.33369/pendipa.10.1.211-222

References

  1. Agarwal, A., Prajapati, R., Raza, S. K., & Thakur, L. K. (2017). GC-MS analysis and antibacterial activity of aerial parts of Quisqualis indica plant extracts. Indian Journal of Pharmaceutical Education and Research, 51(2), 329–336. https://doi.org/10.5530/ijper.51.2.39
  2. Ahmed, R. M. (2024). Phytochemical diversity and nutritional value of kenger at different locations in Sulaimani region–Iraq. Iraqi Journal of Agricultural Sciences, 55(1), 479–487. https://doi.org/10.36103/t7rmmq75
  3. Ahmed, V. A., Rahman, H. S., & Mohammed, M. O. (2023). Phytochemical analysis and in vivo toxicity study of Dianthus orientalis Adams crude extract. Research Square. https://doi.org/10.21203/rs.3.rs-3059711/v1
  4. Ajani, O. O., Owoeye, T. F., Akinlabu, K. D., Bolade, O. P., Aribisala, O., & Durodola, B. (2021). Sorghum extract: Phytochemical, proximate, and GC-MS analyses. Foods and Raw Materials, 9(2), 371–378. https://doi.org/10.21603/2308-4057-2021-2-371-378
  5. Akondo, S., Ahmed, M. T., Uddin, M. R., & Sarker, U. K. (2024). Combined application of herbicide and aqueous extract of sorghum and mustard crop residue enhance weed management and yield of wheat. Journal of Agroforestry and Environment, 17(2), 1–8. https://doi.org/10.55706/jae1710
  6. Albuquerque, M. B. de, Santos, R. C. dos, Lima, L. M. de, Filho, P. de A. M., Nogueira, R. J. M. C., Câmara, C. A. G. da, & Ramos, A. (2010). Allelopathy, an alternative tool to improve cropping systems: A review. Agronomy for Sustainable Development, 31(2), 379–395. https://doi.org/10.1051/agro/2010031
  7. Amrullah, R., Indarwati, I., & Susilo, A. (2024). Allelopathy test of Cyperus rotundus extract on germination and early growth of spiny amaranth weed (Amaranthus spinosus). Journal of Applied Plant Technology, 3(2), 137–145. https://doi.org/10.30742/6zjn2m95
  8. Anwar, S., Naseem, S., & Ali, Z. (2023). Biochemical analysis, photosynthetic gene (psbA) down-regulation, and in silico receptor prediction in weeds in response to exogenous application of phenolic acids and their analogs. PLoS ONE, 18(3), e0277146. https://doi.org/10.1371/journal.pone.0277146
  9. Anwar, S., Naseem, S., Karimi, S., Asi, M. R., Akrem, A., & Ali, Z. (2021). Bioherbicidal activity and metabolic profiling of potent allelopathic plant fractions against major weeds of wheat—Way forward to lower the risk of synthetic herbicides. Frontiers in Plant Science, 12, 632390. https://doi.org/10.3389/fpls.2021.632390
  10. Barrales-Cureño, H. J., Herrera-Cabrera, B. E., Montiel-Montoya, J., López-Valdez, L. G., Salgado-Garciglia, R., Ocaño-Higuera, V. M., Sánchez-Herrera, L. M., Lucho-Constantino, G. G., & Zaragoza-Martínez, F. (2022). Metabolomics studies of allelopathy: A review. Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(1), 1–22. https://doi.org/10.15446/rcciquifa.v51n1.102693
  11. Biswas, S. M. (2017). Optimized analytical techniques for extraction and separation of bioactive compounds from diverse plant types. Biochemistry & Analytical Biochemistry, 6(1), 313. https://doi.org/10.4172/2161-1009.1000313
  12. Boonmee, S., & Kato-Noguchi, H. (2017). Allelopathic activity of Acacia concinna pod extracts. Emirates Journal of Food and Agriculture, 29, 1–7. https://doi.org/10.9755/ejfa.2016-07-964
  13. Cheema, M. W. (2020). Weed control in wheat through different sorghum formulations as an organic herbicide. Asian Journal of Agriculture and Biology, 8(2), 129–136. https://doi.org/10.35495/ajab.2018.09.285
  14. Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, 1020. https://doi.org/10.3389/fpls.2015.01020
  15. Dalar, A., Bengü, A. Ş., & Allahverdiyev, O. (2018). Analysis of phytochemical composition and biological activities of Verbascum cheiranthifolium var. cheiranthifolium stem and flowers. International Journal of Secondary Metabolite, 5(3), 233–245. https://doi.org/10.21448/ijsm.401127
  16. Delecolle, J. (2017). A complementary metabolomics approach to screen metabolic fingerprints of plant extracts used in human health (Doctoral dissertation). HAL. https://tel.archives-ouvertes.fr/tel-01559676
  17. Desianti, N. (2014). Uji toksisitas dan identifikasi golongan senyawa aktif fraksi etil asetat, kloroform, petroleum eter dan n-heksana hasil hidrolisis ekstrak metanol mikroalga Chlorella sp. (Undergraduate thesis). Universitas Islam Negeri Maulana Malik Ibrahim.
  18. Duke, S. O. (2015). Proving allelopathy in crop–weed interactions. Weed Science, 63, 121–132. https://doi.org/10.1614/ws-d-13-00130.1
  19. Ferdosi, M. F. H., Khan, I. H., & Javaid, A. (2023). Bioactive components of ethyl acetate extract of Cassia fistula flowers. The Journal of Animal and Plant Sciences, 33(3). https://doi.org/10.36899/japs.2023.3.0643
  20. Flieller, G. (2022). Innovative characterization method for the research of molecules with an allelopathic potential (Doctoral dissertation). HAL. https://theses.hal.science/tel-03937412
  21. Freitas, M. L. de O., Ricardo, L. L., Zonetti, P. da C., Carvalho, T. F. F. de, Andreola, R., Gonçalvez-Zuliani, A. M. O., Mannigel, A. R., Oliveira, J. R. de, Felipe, D. F., Gasparotto, F., Schmidt-Filho, E., & Bido, G. de S. (2019). Control of invasive plants by the phytotoxicity effect of Sorghum bicolor (L.) Moench. Journal of Agricultural Science, 11(10), 313–321. https://doi.org/10.5539/jas.v11n10p313
  22. Gam, H., Injamum-Ul-Hoque, M., Kang, Y., Ahsan, S. M., Hasan, M. M., Shaffique, S., Kang, S.-M., & Lee, I. (2024). Allelopathic effect of the methanol extract of the weed species red sorrel (Rumex acetosella L.) on the growth, phytohormone content and antioxidant activity of the cover crop white clover (Trifolium repens L.). BMC Plant Biology, 24(1). https://doi.org/10.1186/s12870-024-05240-z
  23. Guntoro, D., Rokhmaningsih, D. W., & Nuryana, F. I. (2020). Identification of allelochemical compounds from each part of Tetracera indica (L.) Merr. Rasayan Journal of Chemistry, 13(4), 2308–2316. https://doi.org/10.31788/rjc.2020.1345763
  24. Hierro, J. L., & Callaway, R. M. (2021). The ecological importance of allelopathy. Annual Review of Ecology, Evolution, and Systematics, 52(1), 25–45. https://doi.org/10.1146/annurev-ecolsys-051120-030619
  25. Hussain, M. I., Danish, S., Sánchez-Moreiras, A. M., Vicente, Ó., Jabran, K., Chaudhry, U. K., Branca, F., & Reigosa, M. J. (2021). Unraveling sorghum allelopathy in agriculture: Concepts and implications. Plants, 10(9), 1795. https://doi.org/10.3390/plants10091795
  26. Indarwati, I., Jili, A. Q. A., Susilo, A., & Suryaningsih, D. R. (2023). Potensi alelopati ekstrak gulma alang-alang sebagai bioherbisida. Journal of Applied Plant Technology, 2(1), 30–38. https://doi.org/10.30742/japt.v2i1.77
  27. Irmawan, M., Mandey, F., & Dali, S. (2018b). Isolation, identification, characterization, and toxicity assay of non-polar secondary metabolite fraction from Ageratum conyzoides L. Indonesian Journal of Chemical Research, 6(1), 513–520. https://doi.org/10.30598/v12
  28. Iryani, I., Iswendi, I., & Katrina, I. T. (2017). Uji aktivitas antidiabetes mellitus senyawa metabolit sekunder fraksi air dari beras ketan hitam (Oryza sativa L. var. glutinosa) pada mencit putih. EKSAKTA Berkala Ilmiah Bidang MIPA, 18(1), 54–60. https://doi.org/10.24036/eksakta/vol18-iss01/17
  29. Ismaini, L., & Surya, M. I. (2023). Metabolite profiling of wild underutilized raspberry (Rubus pyrifolius). Notulae Scientia Biologicae, 15(4), 11695. https://doi.org/10.55779/nsb15411695
  30. Jabeen, S., Ali, M. F., Din, A. M. U., Javed, T., Mohammed, N. S., Chaudhari, S. K., Javed, M. A., Ali, B., Zhang, L., & Rahimi, M. (2023). Phytochemical screening and allelopathic potential of phytoextracts of three invasive grass species. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-35253-x
  31. Jemi, R., Damanik, R. D. E., & Indrayanti, L. (2019). Aktivitas larvasida ekstrak daun tumih (Combretocarpus rotundatus (Miq.) Danser) terhadap larva Aedes aegypti. Jurnal Ilmu Kehutanan, 13(1), 77–85. https://doi.org/10.22146/jik.46208
  32. Kostina-Bednarz, M., Płonka, J., & Barchañska, H. (2023). Allelopathy as a source of bioherbicides: Challenges and prospects for sustainable agriculture. Reviews in Environmental Science and Bio/Technology, 22(2), 471–495. https://doi.org/10.1007/s11157-023-09656-1
  33. Mudaningrat, A., Indriani, B. S., Istianah, N., Retnoningsih, A., & Rahayu, E. S. (2023). Literature review: Pemanfaatan jenis-jenis Syzygium di Indonesia. Jurnal Biologi dan Pembelajarannya, 10(2), 135–146. https://doi.org/10.29407/jbp.v10i2.20815
  34. Naby, K. Y., & Ali, K. A. (2021). Allelopathic potential of Sorghum bicolor L. root exudates on growth and chlorophyll content of wheat and some grassy weeds. IOP Conference Series: Earth and Environmental Science, 761(1), 012085. https://doi.org/10.1088/1755-1315/761/1/012085
  35. Najib, A., Budi, G. P., Pribadi, T., & Hajoeningtijas, O. D. (2025). Uji beberapa jenis ekstrak gulma sebagai herbisida nabati terhadap pertumbuhan dan hasil tanaman terong (Solanum melongena L.). Proceedings Series on Physical & Formal Sciences, 8, 149–156. https://doi.org/10.30595/pspfs.v8i.1488
  36. Othman, A. N., Zainudin, N. F. S., Zaidan, U. H., & Shamsi, S. (2021). A comparative study on the larvicidal effects of Piper sarmentosum (Kaduk) leaves extracts against Aedes aegypti. Pertanika Journal of Science & Technology, 29(4), 2537–2550. https://doi.org/10.47836/pjst.29.4.31
  37. Rafi, M., Septaningsih, D. A., & Heryanto, R. (2018). Metabolite profiling of Java turmeric (Curcuma xanthoriza) essential oil with different harvest times. Jurnal Kimia Sains dan Aplikasi, 21(4), 237–241. https://doi.org/10.14710/jksa.21.4.237-241
  38. Rahmawati, D., Wirawan, I. G. P., & Sudiarta, I. P. (2022). Identifikasi senyawa fitokimia ekstrak bulung boni (Caulerpa sp.) dari Pantai Serangan. Agrotrop: Journal on Agriculture Science, 12(2), 295. https://doi.org/10.24843/ajoas.2022.v12.i02.p11
  39. Roanisca, O., Mahardika, R. G., & Sari, F. I. P. (2019). Total phenolic and antioxidant capacity of acetone extract of Tristaniopsis merguensis leaves. Stannum Jurnal Sains dan Terapan Kimia, 1(1), 10. https://doi.org/10.33019/jstk.v1i1.1274
  40. Rumanti, A. T., & Saragih, H. (2023). Ekstraksi dan identifikasi kandungan senyawa bioaktif daun saga rambat (Abrus precatorius). Journal of Biota, 8(2), 59. https://doi.org/10.24002/biota.v8i2.6417
  41. Sangeetha, C., & Baskar, P. (2015). Allelopathy in weed management: A critical review. African Journal of Agricultural Research, 10(9), 1004. https://doi.org/10.5897/ajar2013.8434
  42. Saragih, H. (2024). Sintesa nanopartikel senyawa bioaktif daun pegagan (Centella asiatica) dan uji pengaruh pemanasan dan tekanan terhadap diameter dan indeks polidispersitasnya. JPSCR Journal of Pharmaceutical Science and Clinical Research, 9(1), 77. https://doi.org/10.20961/jpscr.v9i1.74982
  43. Sołtys-Kalina, D., Krasuska, U., Bogatek, R., & Gniazdowska, A. (2013). Allelochemicals as bioherbicides—Present and perspectives. In InTech eBooks. https://doi.org/10.5772/56185
  44. Surahmaida, S., Sudarwati, T. P. L., & Junairiah, J. (2019). Analisis GC-MS terhadap senyawa fitokimia ekstrak metanol Ganoderma lucidum. Jurnal Kimia Riset, 3(2), 147. https://doi.org/10.20473/jkr.v3i2.12060
  45. Susilo, B. S. M., Indarwati, I., & Susilo, A. (2024). Allelopathy test of reeds (Imperata cylindrica) on germination and early growth of green beans (Vigna radiata L.). Journal of Applied Plant Technology, 3(1), 1. https://doi.org/10.30742/skh42566
  46. Talahatu, D. R., & Papilaya, P. M. (2015). Pemanfaatan ekstrak daun cengkeh (Syzygium aromaticum L.) sebagai herbisida alami terhadap pertumbuhan gulma rumput teki (Cyperus rotundus L.). Biopendix: Jurnal Biologi Pendidikan dan Terapan, 1(2), 160. https://doi.org/10.30598/biopendixvol1issue2page160-170
  47. Tukiran, T., Miranti, M. G., Dianawati, I., & Sabila, F. I. (2020). Aktivitas antioksidan ekstrak daun kelor (Moringa oleifera Lam.) dan buah bit (Beta vulgaris L.) sebagai bahan tambahan minuman suplemen. Jurnal Kimia Riset, 5(2), 113. https://doi.org/10.20473/jkr.v5i2.22518
  48. Uddin, M. R., Park, S. U., Dayan, F. E., & Pyon, J. Y. (2013). Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Management Science, 70(2), 252. https://doi.org/10.1002/ps.3550
  49. Waligóra, H., Nowicka, S., Idziak, R., Ochodzki, P., Szulc, P., Majchrzak, L., & Sekutowski, T. (2024). The total phenolic compound and sorgoleone content as possible indirect indicators of the allelopathic potential of sorghum varieties (Sorghum bicolor (L.) Moench). Journal of Plant Protection Research. https://doi.org/10.24425/jppr.2023.146869
  50. Wijaya, M. D., Indraningrat, A. A. G., & Kirtanayasa, I. G. Y. A. (2023). Phytochemicals and larvicidal activity of Sonneratia alba root extracts from Ngurah Rai Mangrove Forest, Denpasar-Bali. Biology, Medicine & Natural Product Chemistry, 12(2), 499–505. https://doi.org/10.14421/biomedich.2023.122.499-505
  51. Yuan, J., Meng, J., Liang, X., Yang, E., Yang, X., & Chen, W. (2017). Organic molecules from biochar leachates have a positive effect on rice seedling cold tolerance. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01624