Isi Artikel Utama

Abstrak

Pati sagu hasil industri tradisional di Kalimantan Barat memiliki aroma asam dan berwarna kecoklatan sehingga hanya digunakan secara terbatas pada pembuatan kue-kue tradisional. Tujuan dari penelitian ini adalah mengevaluasi karakteristik fisikokimia dan organoleptik bubble pearl tapioka yang disubstitusi pati sagu hasil dari industri tadisional asal Kalimantan Barat. Hasil penelitian ini diharapkan dapat mendiversifikasi penggunaan pati sagu lokal. Bubble pearl dibuat dengan berbagai proporsi tapioka dan pati sagu (100:0; 90:10; 80:20; 70:30%) dan dianalisis kadar air, kekerasan, kehilangan padatan akibat pemasakan, waktu pemasakan, kapasitas rehidrasi, dan analisis hedonik (warna, rasa, aroma dan kekenyalan). Hasil penelitian menunjukkan subtitusi pati sagu pada bubble pearl memengaruhi kadar air, kekerasan, kehilangan padatan akibat pemasakan, waktu masak, kapasitas rehidrasi, warna dan aroma bubble pearl. Subtitusi pati sagu tidak memengaruhi rasa dan kekenyalan bubble pearl. Semakin besar subtitusi pati sagu maka kadar air, kekerasan, kapastitas rehidrasi semakin meningkat. Semakin besar subtitusi pati sagu maka kehilangan padatan akibat pemasakan, waktu masak, warna dan aroma bubble pearl semakin menurun. Pati sagu hasil industri tradisional lokal Kalimantan Barat dapat digunakan untuk mensubtitusi bubble pearl tapioka, meskipun panelis lebih menyukai bubble pearl dari 100% tapioka dari segi warna dan aroma. Pati sagu hasil industri lokal mempunyai potensi dimanfaatkan sebagai bubble pearl dengan perbaikan pada warna dan aroma pati sagu.

Kata Kunci

bubble pearl local sago starch tapioca starch bubble pearl pati sagu lokal pati tapioka

Rincian Artikel

Cara Mengutip
Indrastuti, Y. E., Kristandi, A. Y., & Imelda, F. (2023). KARAKTERISTIK FISIKOKIMIA DAN ORGANOLEPTIK BUBBLE PEARL TAPIOKA DAN PATI SAGU LOKAL KALIMANTAN BARAT. Jurnal Agroindustri, 13(1), 14–23. https://doi.org/10.31186/jagroindustri.13.1.14-23

Referensi

  1. Afifah, N., & Ratnawati, L. (2017). Quality assessment of dry noodles made from blend of mocaf flour , rice flour and corn flour Quality assessment of dry noodles made from blend of mocaf flour , rice flour and corn flour. IOP Conf. Series: Earth and Environmental Science 101. https://doi.org/10.1088/1755-1315/
  2. Bulathgama, U., Gunasekara, D. M., Wickramasinghe, I., & Somendrika, D. (2020). Development of Commercial Tapioca Pearls used in Bubble Tea by Microwave Heat – Moisture Treatment in Cassava Starch Modification. European Journal of Engineering Research and Science, 5(1), 103–106. https://doi.org/10.24018/ejeng.2020.5.1.1455
  3. Du, C., Jiang, F., Jiang, W., Ge, W., & Du, S. kui. (2020). Physicochemical and structural properties of sago starch. International Journal of Biological Macromolecules, 164, 1785–1793. https://doi.org/10.1016/j.ijbiomac.2020.07.310
  4. Du, S., Jiang, H., Ai, Y., & Jane, J. (2014). Physicochemical properties and digestibility of common bean ( Phaseolus vulgaris L .) starches. Carbohydrate Polymers, 108, 200–205. https://doi.org/10.1016/j.carbpol.2014.03.004
  5. Hastuti, R. P., Sasongko, S. B., & Djaeni, M. (2021). Rehydration Capacity of Vermicelli Prepared by Combining Arenga Starch , Rice Flour and Sorghum Rehydration Capacity of Vermicelli Prepared by Combining Arenga Starch , Rice Flour and Sorghum. IIOP Conf. Series: Materials Science and Engineering, 1053, 1–6. https://doi.org/10.1088/1757-899X/1053/1/012115
  6. Kamsiati, E., Rahayu, E., & Herawati, H. (2021). Pengaruh Konsentrasi Binder dan Lama Waktu Pengukusan Terhadap Karakteristik Mi Sorgum Bebas Gluten. Agrointek, 15(1), 134–145.
  7. Kaur, M., Sandhu, K. S., Ahlawat, R. P., & Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. Journal of Food Science and Technology, 52(3), 1642–1648. https://doi.org/10.1007/s13197-013-1136-2
  8. Komuna, H. (2018). Improvement of sago processing machinery. In H. Ehara, Yu. Toyoda, & D. V Jhonson (Eds.), Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. Springer Publishing Company. https://doi.org/10.1007/978-981-10-5269-9_17
  9. Krishnakumar, T., Sajeev, M. S., Raju, S., Giri, N. A., Pradeepika, C., & Bansode, V. (2020). Studies on the development of cassava based reconstituted dry starch sago with modified starch as binder and characterization of its physico-functional properties. Ournal of Environmental Biology, 41(July), 840–844.
  10. Li, Q., Liu, S., Obadi, M., Jiang, Y., Zhao, F., Jiang, S., & Xu, B. (2020). The impact of starch degradation induced by pre-gelatinization treatment on the quality of noodles. Food Chemistry, 302(March 2019), 125267. https://doi.org/10.1016/j.foodchem.2019.125267
  11. Maherawati, Lestari, R. B., & Haryadi. (2012). Karakteristik Pati dari Batang Sagu Kalimantan Barat pada Tahap Pertumbuhan yang Berbeda. AgriTECH, 31(1), 9–13.
  12. Mandel, J. H. (2016). Penggunaan Pati Sagu Termodifikasi Dengan Heat Moisture Treatment Sebagai Bahan Substitusi Untuk Pembuatan Mi Kering The Use Of Heat Moisture Treatment- Modified Sago Starch As A Substitute Ingredient For Dried Noodle Product. Jurnal Penelitian Teknologi Industri, 8(1), 57–72.
  13. Martinez, M. M., Li, C., Okoniewska, M., Mukherjee, I., Vellucci, D., & Hamaker, B. (2018). Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydrate Polymers, 197(June), 531–539. https://doi.org/10.1016/j.carbpol.2018.06.021
  14. Nisah, K. (2018). Study Pengaruh Kandungan Amilosa Dan Amilopektin Umbi-Umbian Terhadap Karakteristik Fisik Plastik Biodegradable Dengan Plastizicer Gliserol. BIOTIK: Jurnal Ilmiah Biologi Teknologi Dan Kependidikan, 5(2), 106. https://doi.org/10.22373/biotik.v5i2.3018
  15. Polnaya, F. J., Breemer, R., Augustyn, G. H., & Tuhumury, H. C. D. (2015). Karakteristik Sifat-Sifat Fisiko-Kimia Pati Ubi Jalar, Ubi Kayu, Keladi dan Sagu. Agriniimal, 5(1), 37–42.
  16. Polnaya, F. J., Huwae, A. A., Tetelepta, G., Teknologi, J., Pertanian, H., Pertanian, F., Pattimura, U., & Poka, K. (2018). Karakteristik Sifat Fisiko-Kimia dan Fungsional Pati Sagu Ihur ( Metroxylon sylvestre ) Dimodifikasi dengan Hidrolisis Asam. Agritech, 38(1), 7–15.
  17. Raharja, K. T., Chabibah, A. N., Sudarmayasa, I. W., & Romadhoni, I. F. (2021). Pembuatan Boba Kopi Biji Salak Sebagai Pangan Fungsional Sumber Antioksidan. Jurnal Technopreneur (JTech), 9(1), 7–13. https://doi.org/10.30869/jtech.v9i1.690
  18. Rashid, R. S. A., Dos Mohamed, A. M., Achudan, S. N., & Mittis, P. (2020). Physicochemical properties of resistant starch type III from sago starch at different palm stages. Materials Today: Proceedings, 31(1), 150–154. https://doi.org/10.1016/j.matpr.2020.01.511
  19. Romero-Bastida, C. A., Tapia-Bl ́acido, D. ., ́endez-Montealvo, G., Bello-P ́erez, L. A., Vel ́azquez, G., & Alvarez-Ramirez, J. (2016). Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydrate Polymers, 152, 351–360. https://doi.org/10.1016/j.carbpol.2016.07.009
  20. Rosani, O., Susanty, D., & Triyanto, A. (2019). Angka Kapang Dan Khamir Pada Lada Putih Asal Bangka. Jurnal Sains Natural, 5(2), 101. https://doi.org/10.31938/jsn.v5i2.260
  21. Rosida, D. F. (2019). Inovasi teknologi pengolahan sagu (Y. M. Supriyadi (ed.); Pertama). CV. Mitra Sumber Rejeki.
  22. Sakkara, S., Nataraj, D., Venkatesh, K., & Reddy, N. (2019). Influence of Alkali Treatment on the Physicochemical and Mechanical Properties of Starch Chitosan Films. Starch/Staerke, 71(3–4), 1–22. https://doi.org/10.1002/star.201800084
  23. Suryani, S. (2022). Inovasi Boba Sagu dengan Kearifan Lokal Desa Sungai Tohor Sebagai Produk Milenial yang Memikat Boba Sago Innovation with Local Wisdom of Sungai Tohor Village as an Attractive Millennial Product. JCSPA: Journal Of Community Services Public Affairs, 2(4), 164–174.
  24. Teng, L. Y., Chin, N. L., & Yusof, Y. A. (2013). Food Hydrocolloids Rheological and textural studies of fresh and freeze-thawed native sago starch e sugar gels . II . Comparisons with other starch sources and reheating effects. Food Hydrocolloids, 31(2), 156–165. https://doi.org/10.1016/j.foodhyd.2012.11.002
  25. USDA. (2019). Tapioca, pearl, dry. https://fdc.nal.usda.gov/fdcapp.html#/fooddetails/169717/nutrients
  26. Uthumporn, U., Wahidah, N., & Karim, A. A. (2014). Physicochemical properties of starch from sago (Metroxylon Sagu) palm grown in mineral soil at different growth stages. IOP Conference Series: Materials Science and Engineering, 62(1), 1–11. https://doi.org/10.1088/1757-899X/62/1/012026
  27. Wattanachant, S., Syed Muhammad, S. K., Mat Hashim, D., & Abd Rahman, R. (2002). Suitability of sago starch as a base for dual-modification. Songklanakarin Journal of Science and Technology, 24(3), 431–438.
  28. Yadav, B. S., Yadav, R. B., Kumari, M., & Khatkar, B. S. (2014). LWT - Food Science and Technology Studies on suitability of wheat fl our blends with sweet potato, colocasia and water chestnut flours for noodle making. LWT - Food Science and Technology, 57(1), 352–358. https://doi.org/10.1016/j.lwt.2013.12.042
  29. Yuliani, H., Yuliana, N. D., Budijanto, S.,. (2015). Formulasi Mi Kering Sagu dengan Substitusi Tepung Kacang Hijau. Agritech, 35(4), 387–395.
  30. Zailani, M. A., Kamilah, H., Husaini, A., Awang Seruji, A. Z. R., & Sarbini, S. R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids, 122(July 2021), 107042. https://doi.org/10.1016/j.foodhyd.2021.107042