Main Article Content

Abstract

Sago starch from traditional industries in West Kalimantan has a sour aroma and brownish color, so it is only used to make traditional cakes. This study aimed to evaluate the physicochemical sensory characteristics of bubble pearl tapioca substituted for sago starch produced from a traditional industry in West Kalimantan. The results of this study are expected to diversify the use of local sago starch. Bubble pearls were made with various proportions of tapioca and sago starch (100:0 90:10 80:20 70:30%) and analyzed for water content, hardness, cooking loss, cooking time, rehydration capacity, and hedonic analysis (color, taste, aroma, and Springiness). The results showed that substituting sago starch in bubble pearls affected the water content, hardness, cooking loss, cooking time, rehydration capacity, color, and aroma of bubble pearls. Substitution of sago starch does not affect the taste and elasticity of the bubble pearls. A higher substitution of sago starch increased the bubble pearls' water content, hardness, and rehydration capacity. A higher substitution of sago starch decreased cooking loss, cooking time, color, and aroma of bubble pearl decreased. Sago starch from the local traditional industry of West Kalimantan can be used to substitute tapioca bubble pearls. However, panelists prefer bubble pearls from 100% tapioca in terms of color and aroma. Sago starch from the local industry has the potential to be used as bubble pearls by improving the color and aroma of sago starch.

Keywords

bubble pearl local sago starch tapioca starch bubble pearl pati sagu lokal pati tapioka

Article Details

How to Cite
Indrastuti, Y. E., Kristandi, A. Y., & Imelda, F. (2023). PHYSICOCHEMICAL AND ORGANOLEPTIC CHARACTERISTICS OF BUBBLE PEARL TAPIOCA AND LOCAL SAGO STARCH IN WEST KALIMANTAN. Jurnal Agroindustri, 13(1), 14–23. https://doi.org/10.31186/jagroindustri.13.1.14-23

References

  1. Afifah, N., & Ratnawati, L. (2017). Quality assessment of dry noodles made from blend of mocaf flour , rice flour and corn flour Quality assessment of dry noodles made from blend of mocaf flour , rice flour and corn flour. IOP Conf. Series: Earth and Environmental Science 101. https://doi.org/10.1088/1755-1315/
  2. Bulathgama, U., Gunasekara, D. M., Wickramasinghe, I., & Somendrika, D. (2020). Development of Commercial Tapioca Pearls used in Bubble Tea by Microwave Heat – Moisture Treatment in Cassava Starch Modification. European Journal of Engineering Research and Science, 5(1), 103–106. https://doi.org/10.24018/ejeng.2020.5.1.1455
  3. Du, C., Jiang, F., Jiang, W., Ge, W., & Du, S. kui. (2020). Physicochemical and structural properties of sago starch. International Journal of Biological Macromolecules, 164, 1785–1793. https://doi.org/10.1016/j.ijbiomac.2020.07.310
  4. Du, S., Jiang, H., Ai, Y., & Jane, J. (2014). Physicochemical properties and digestibility of common bean ( Phaseolus vulgaris L .) starches. Carbohydrate Polymers, 108, 200–205. https://doi.org/10.1016/j.carbpol.2014.03.004
  5. Hastuti, R. P., Sasongko, S. B., & Djaeni, M. (2021). Rehydration Capacity of Vermicelli Prepared by Combining Arenga Starch , Rice Flour and Sorghum Rehydration Capacity of Vermicelli Prepared by Combining Arenga Starch , Rice Flour and Sorghum. IIOP Conf. Series: Materials Science and Engineering, 1053, 1–6. https://doi.org/10.1088/1757-899X/1053/1/012115
  6. Kamsiati, E., Rahayu, E., & Herawati, H. (2021). Pengaruh Konsentrasi Binder dan Lama Waktu Pengukusan Terhadap Karakteristik Mi Sorgum Bebas Gluten. Agrointek, 15(1), 134–145.
  7. Kaur, M., Sandhu, K. S., Ahlawat, R. P., & Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. Journal of Food Science and Technology, 52(3), 1642–1648. https://doi.org/10.1007/s13197-013-1136-2
  8. Komuna, H. (2018). Improvement of sago processing machinery. In H. Ehara, Yu. Toyoda, & D. V Jhonson (Eds.), Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. Springer Publishing Company. https://doi.org/10.1007/978-981-10-5269-9_17
  9. Krishnakumar, T., Sajeev, M. S., Raju, S., Giri, N. A., Pradeepika, C., & Bansode, V. (2020). Studies on the development of cassava based reconstituted dry starch sago with modified starch as binder and characterization of its physico-functional properties. Ournal of Environmental Biology, 41(July), 840–844.
  10. Li, Q., Liu, S., Obadi, M., Jiang, Y., Zhao, F., Jiang, S., & Xu, B. (2020). The impact of starch degradation induced by pre-gelatinization treatment on the quality of noodles. Food Chemistry, 302(March 2019), 125267. https://doi.org/10.1016/j.foodchem.2019.125267
  11. Maherawati, Lestari, R. B., & Haryadi. (2012). Karakteristik Pati dari Batang Sagu Kalimantan Barat pada Tahap Pertumbuhan yang Berbeda. AgriTECH, 31(1), 9–13.
  12. Mandel, J. H. (2016). Penggunaan Pati Sagu Termodifikasi Dengan Heat Moisture Treatment Sebagai Bahan Substitusi Untuk Pembuatan Mi Kering The Use Of Heat Moisture Treatment- Modified Sago Starch As A Substitute Ingredient For Dried Noodle Product. Jurnal Penelitian Teknologi Industri, 8(1), 57–72.
  13. Martinez, M. M., Li, C., Okoniewska, M., Mukherjee, I., Vellucci, D., & Hamaker, B. (2018). Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydrate Polymers, 197(June), 531–539. https://doi.org/10.1016/j.carbpol.2018.06.021
  14. Nisah, K. (2018). Study Pengaruh Kandungan Amilosa Dan Amilopektin Umbi-Umbian Terhadap Karakteristik Fisik Plastik Biodegradable Dengan Plastizicer Gliserol. BIOTIK: Jurnal Ilmiah Biologi Teknologi Dan Kependidikan, 5(2), 106. https://doi.org/10.22373/biotik.v5i2.3018
  15. Polnaya, F. J., Breemer, R., Augustyn, G. H., & Tuhumury, H. C. D. (2015). Karakteristik Sifat-Sifat Fisiko-Kimia Pati Ubi Jalar, Ubi Kayu, Keladi dan Sagu. Agriniimal, 5(1), 37–42.
  16. Polnaya, F. J., Huwae, A. A., Tetelepta, G., Teknologi, J., Pertanian, H., Pertanian, F., Pattimura, U., & Poka, K. (2018). Karakteristik Sifat Fisiko-Kimia dan Fungsional Pati Sagu Ihur ( Metroxylon sylvestre ) Dimodifikasi dengan Hidrolisis Asam. Agritech, 38(1), 7–15.
  17. Raharja, K. T., Chabibah, A. N., Sudarmayasa, I. W., & Romadhoni, I. F. (2021). Pembuatan Boba Kopi Biji Salak Sebagai Pangan Fungsional Sumber Antioksidan. Jurnal Technopreneur (JTech), 9(1), 7–13. https://doi.org/10.30869/jtech.v9i1.690
  18. Rashid, R. S. A., Dos Mohamed, A. M., Achudan, S. N., & Mittis, P. (2020). Physicochemical properties of resistant starch type III from sago starch at different palm stages. Materials Today: Proceedings, 31(1), 150–154. https://doi.org/10.1016/j.matpr.2020.01.511
  19. Romero-Bastida, C. A., Tapia-Bl ́acido, D. ., ́endez-Montealvo, G., Bello-P ́erez, L. A., Vel ́azquez, G., & Alvarez-Ramirez, J. (2016). Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydrate Polymers, 152, 351–360. https://doi.org/10.1016/j.carbpol.2016.07.009
  20. Rosani, O., Susanty, D., & Triyanto, A. (2019). Angka Kapang Dan Khamir Pada Lada Putih Asal Bangka. Jurnal Sains Natural, 5(2), 101. https://doi.org/10.31938/jsn.v5i2.260
  21. Rosida, D. F. (2019). Inovasi teknologi pengolahan sagu (Y. M. Supriyadi (ed.); Pertama). CV. Mitra Sumber Rejeki.
  22. Sakkara, S., Nataraj, D., Venkatesh, K., & Reddy, N. (2019). Influence of Alkali Treatment on the Physicochemical and Mechanical Properties of Starch Chitosan Films. Starch/Staerke, 71(3–4), 1–22. https://doi.org/10.1002/star.201800084
  23. Suryani, S. (2022). Inovasi Boba Sagu dengan Kearifan Lokal Desa Sungai Tohor Sebagai Produk Milenial yang Memikat Boba Sago Innovation with Local Wisdom of Sungai Tohor Village as an Attractive Millennial Product. JCSPA: Journal Of Community Services Public Affairs, 2(4), 164–174.
  24. Teng, L. Y., Chin, N. L., & Yusof, Y. A. (2013). Food Hydrocolloids Rheological and textural studies of fresh and freeze-thawed native sago starch e sugar gels . II . Comparisons with other starch sources and reheating effects. Food Hydrocolloids, 31(2), 156–165. https://doi.org/10.1016/j.foodhyd.2012.11.002
  25. USDA. (2019). Tapioca, pearl, dry. https://fdc.nal.usda.gov/fdcapp.html#/fooddetails/169717/nutrients
  26. Uthumporn, U., Wahidah, N., & Karim, A. A. (2014). Physicochemical properties of starch from sago (Metroxylon Sagu) palm grown in mineral soil at different growth stages. IOP Conference Series: Materials Science and Engineering, 62(1), 1–11. https://doi.org/10.1088/1757-899X/62/1/012026
  27. Wattanachant, S., Syed Muhammad, S. K., Mat Hashim, D., & Abd Rahman, R. (2002). Suitability of sago starch as a base for dual-modification. Songklanakarin Journal of Science and Technology, 24(3), 431–438.
  28. Yadav, B. S., Yadav, R. B., Kumari, M., & Khatkar, B. S. (2014). LWT - Food Science and Technology Studies on suitability of wheat fl our blends with sweet potato, colocasia and water chestnut flours for noodle making. LWT - Food Science and Technology, 57(1), 352–358. https://doi.org/10.1016/j.lwt.2013.12.042
  29. Yuliani, H., Yuliana, N. D., Budijanto, S.,. (2015). Formulasi Mi Kering Sagu dengan Substitusi Tepung Kacang Hijau. Agritech, 35(4), 387–395.
  30. Zailani, M. A., Kamilah, H., Husaini, A., Awang Seruji, A. Z. R., & Sarbini, S. R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids, 122(July 2021), 107042. https://doi.org/10.1016/j.foodhyd.2021.107042