Main Article Content
Abstract
Sago starch from traditional industries in West Kalimantan has a sour aroma and brownish color, so it is only used to make traditional cakes. This study aimed to evaluate the physicochemical sensory characteristics of bubble pearl tapioca substituted for sago starch produced from a traditional industry in West Kalimantan. The results of this study are expected to diversify the use of local sago starch. Bubble pearls were made with various proportions of tapioca and sago starch (100:0 90:10 80:20 70:30%) and analyzed for water content, hardness, cooking loss, cooking time, rehydration capacity, and hedonic analysis (color, taste, aroma, and Springiness). The results showed that substituting sago starch in bubble pearls affected the water content, hardness, cooking loss, cooking time, rehydration capacity, color, and aroma of bubble pearls. Substitution of sago starch does not affect the taste and elasticity of the bubble pearls. A higher substitution of sago starch increased the bubble pearls' water content, hardness, and rehydration capacity. A higher substitution of sago starch decreased cooking loss, cooking time, color, and aroma of bubble pearl decreased. Sago starch from the local traditional industry of West Kalimantan can be used to substitute tapioca bubble pearls. However, panelists prefer bubble pearls from 100% tapioca in terms of color and aroma. Sago starch from the local industry has the potential to be used as bubble pearls by improving the color and aroma of sago starch.
Keywords
Article Details
Copyright (c) 2023 Y. Erning Indrastuti, Andreas Yolan Kristandi, Fenny Imelda

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Afifah, N., & Ratnawati, L. (2017). Quality assessment of dry noodles made from blend of mocaf flour , rice flour and corn flour Quality assessment of dry noodles made from blend of mocaf flour , rice flour and corn flour. IOP Conf. Series: Earth and Environmental Science 101. https://doi.org/10.1088/1755-1315/
- Bulathgama, U., Gunasekara, D. M., Wickramasinghe, I., & Somendrika, D. (2020). Development of Commercial Tapioca Pearls used in Bubble Tea by Microwave Heat – Moisture Treatment in Cassava Starch Modification. European Journal of Engineering Research and Science, 5(1), 103–106. https://doi.org/10.24018/ejeng.2020.5.1.1455
- Du, C., Jiang, F., Jiang, W., Ge, W., & Du, S. kui. (2020). Physicochemical and structural properties of sago starch. International Journal of Biological Macromolecules, 164, 1785–1793. https://doi.org/10.1016/j.ijbiomac.2020.07.310
- Du, S., Jiang, H., Ai, Y., & Jane, J. (2014). Physicochemical properties and digestibility of common bean ( Phaseolus vulgaris L .) starches. Carbohydrate Polymers, 108, 200–205. https://doi.org/10.1016/j.carbpol.2014.03.004
- Hastuti, R. P., Sasongko, S. B., & Djaeni, M. (2021). Rehydration Capacity of Vermicelli Prepared by Combining Arenga Starch , Rice Flour and Sorghum Rehydration Capacity of Vermicelli Prepared by Combining Arenga Starch , Rice Flour and Sorghum. IIOP Conf. Series: Materials Science and Engineering, 1053, 1–6. https://doi.org/10.1088/1757-899X/1053/1/012115
- Kamsiati, E., Rahayu, E., & Herawati, H. (2021). Pengaruh Konsentrasi Binder dan Lama Waktu Pengukusan Terhadap Karakteristik Mi Sorgum Bebas Gluten. Agrointek, 15(1), 134–145.
- Kaur, M., Sandhu, K. S., Ahlawat, R. P., & Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. Journal of Food Science and Technology, 52(3), 1642–1648. https://doi.org/10.1007/s13197-013-1136-2
- Komuna, H. (2018). Improvement of sago processing machinery. In H. Ehara, Yu. Toyoda, & D. V Jhonson (Eds.), Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. Springer Publishing Company. https://doi.org/10.1007/978-981-10-5269-9_17
- Krishnakumar, T., Sajeev, M. S., Raju, S., Giri, N. A., Pradeepika, C., & Bansode, V. (2020). Studies on the development of cassava based reconstituted dry starch sago with modified starch as binder and characterization of its physico-functional properties. Ournal of Environmental Biology, 41(July), 840–844.
- Li, Q., Liu, S., Obadi, M., Jiang, Y., Zhao, F., Jiang, S., & Xu, B. (2020). The impact of starch degradation induced by pre-gelatinization treatment on the quality of noodles. Food Chemistry, 302(March 2019), 125267. https://doi.org/10.1016/j.foodchem.2019.125267
- Maherawati, Lestari, R. B., & Haryadi. (2012). Karakteristik Pati dari Batang Sagu Kalimantan Barat pada Tahap Pertumbuhan yang Berbeda. AgriTECH, 31(1), 9–13.
- Mandel, J. H. (2016). Penggunaan Pati Sagu Termodifikasi Dengan Heat Moisture Treatment Sebagai Bahan Substitusi Untuk Pembuatan Mi Kering The Use Of Heat Moisture Treatment- Modified Sago Starch As A Substitute Ingredient For Dried Noodle Product. Jurnal Penelitian Teknologi Industri, 8(1), 57–72.
- Martinez, M. M., Li, C., Okoniewska, M., Mukherjee, I., Vellucci, D., & Hamaker, B. (2018). Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydrate Polymers, 197(June), 531–539. https://doi.org/10.1016/j.carbpol.2018.06.021
- Nisah, K. (2018). Study Pengaruh Kandungan Amilosa Dan Amilopektin Umbi-Umbian Terhadap Karakteristik Fisik Plastik Biodegradable Dengan Plastizicer Gliserol. BIOTIK: Jurnal Ilmiah Biologi Teknologi Dan Kependidikan, 5(2), 106. https://doi.org/10.22373/biotik.v5i2.3018
- Polnaya, F. J., Breemer, R., Augustyn, G. H., & Tuhumury, H. C. D. (2015). Karakteristik Sifat-Sifat Fisiko-Kimia Pati Ubi Jalar, Ubi Kayu, Keladi dan Sagu. Agriniimal, 5(1), 37–42.
- Polnaya, F. J., Huwae, A. A., Tetelepta, G., Teknologi, J., Pertanian, H., Pertanian, F., Pattimura, U., & Poka, K. (2018). Karakteristik Sifat Fisiko-Kimia dan Fungsional Pati Sagu Ihur ( Metroxylon sylvestre ) Dimodifikasi dengan Hidrolisis Asam. Agritech, 38(1), 7–15.
- Raharja, K. T., Chabibah, A. N., Sudarmayasa, I. W., & Romadhoni, I. F. (2021). Pembuatan Boba Kopi Biji Salak Sebagai Pangan Fungsional Sumber Antioksidan. Jurnal Technopreneur (JTech), 9(1), 7–13. https://doi.org/10.30869/jtech.v9i1.690
- Rashid, R. S. A., Dos Mohamed, A. M., Achudan, S. N., & Mittis, P. (2020). Physicochemical properties of resistant starch type III from sago starch at different palm stages. Materials Today: Proceedings, 31(1), 150–154. https://doi.org/10.1016/j.matpr.2020.01.511
- Romero-Bastida, C. A., Tapia-Bl ́acido, D. ., ́endez-Montealvo, G., Bello-P ́erez, L. A., Vel ́azquez, G., & Alvarez-Ramirez, J. (2016). Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydrate Polymers, 152, 351–360. https://doi.org/10.1016/j.carbpol.2016.07.009
- Rosani, O., Susanty, D., & Triyanto, A. (2019). Angka Kapang Dan Khamir Pada Lada Putih Asal Bangka. Jurnal Sains Natural, 5(2), 101. https://doi.org/10.31938/jsn.v5i2.260
- Rosida, D. F. (2019). Inovasi teknologi pengolahan sagu (Y. M. Supriyadi (ed.); Pertama). CV. Mitra Sumber Rejeki.
- Sakkara, S., Nataraj, D., Venkatesh, K., & Reddy, N. (2019). Influence of Alkali Treatment on the Physicochemical and Mechanical Properties of Starch Chitosan Films. Starch/Staerke, 71(3–4), 1–22. https://doi.org/10.1002/star.201800084
- Suryani, S. (2022). Inovasi Boba Sagu dengan Kearifan Lokal Desa Sungai Tohor Sebagai Produk Milenial yang Memikat Boba Sago Innovation with Local Wisdom of Sungai Tohor Village as an Attractive Millennial Product. JCSPA: Journal Of Community Services Public Affairs, 2(4), 164–174.
- Teng, L. Y., Chin, N. L., & Yusof, Y. A. (2013). Food Hydrocolloids Rheological and textural studies of fresh and freeze-thawed native sago starch e sugar gels . II . Comparisons with other starch sources and reheating effects. Food Hydrocolloids, 31(2), 156–165. https://doi.org/10.1016/j.foodhyd.2012.11.002
- USDA. (2019). Tapioca, pearl, dry. https://fdc.nal.usda.gov/fdcapp.html#/fooddetails/169717/nutrients
- Uthumporn, U., Wahidah, N., & Karim, A. A. (2014). Physicochemical properties of starch from sago (Metroxylon Sagu) palm grown in mineral soil at different growth stages. IOP Conference Series: Materials Science and Engineering, 62(1), 1–11. https://doi.org/10.1088/1757-899X/62/1/012026
- Wattanachant, S., Syed Muhammad, S. K., Mat Hashim, D., & Abd Rahman, R. (2002). Suitability of sago starch as a base for dual-modification. Songklanakarin Journal of Science and Technology, 24(3), 431–438.
- Yadav, B. S., Yadav, R. B., Kumari, M., & Khatkar, B. S. (2014). LWT - Food Science and Technology Studies on suitability of wheat fl our blends with sweet potato, colocasia and water chestnut flours for noodle making. LWT - Food Science and Technology, 57(1), 352–358. https://doi.org/10.1016/j.lwt.2013.12.042
- Yuliani, H., Yuliana, N. D., Budijanto, S.,. (2015). Formulasi Mi Kering Sagu dengan Substitusi Tepung Kacang Hijau. Agritech, 35(4), 387–395.
- Zailani, M. A., Kamilah, H., Husaini, A., Awang Seruji, A. Z. R., & Sarbini, S. R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids, 122(July 2021), 107042. https://doi.org/10.1016/j.foodhyd.2021.107042
References
Afifah, N., & Ratnawati, L. (2017). Quality assessment of dry noodles made from blend of mocaf flour , rice flour and corn flour Quality assessment of dry noodles made from blend of mocaf flour , rice flour and corn flour. IOP Conf. Series: Earth and Environmental Science 101. https://doi.org/10.1088/1755-1315/
Bulathgama, U., Gunasekara, D. M., Wickramasinghe, I., & Somendrika, D. (2020). Development of Commercial Tapioca Pearls used in Bubble Tea by Microwave Heat – Moisture Treatment in Cassava Starch Modification. European Journal of Engineering Research and Science, 5(1), 103–106. https://doi.org/10.24018/ejeng.2020.5.1.1455
Du, C., Jiang, F., Jiang, W., Ge, W., & Du, S. kui. (2020). Physicochemical and structural properties of sago starch. International Journal of Biological Macromolecules, 164, 1785–1793. https://doi.org/10.1016/j.ijbiomac.2020.07.310
Du, S., Jiang, H., Ai, Y., & Jane, J. (2014). Physicochemical properties and digestibility of common bean ( Phaseolus vulgaris L .) starches. Carbohydrate Polymers, 108, 200–205. https://doi.org/10.1016/j.carbpol.2014.03.004
Hastuti, R. P., Sasongko, S. B., & Djaeni, M. (2021). Rehydration Capacity of Vermicelli Prepared by Combining Arenga Starch , Rice Flour and Sorghum Rehydration Capacity of Vermicelli Prepared by Combining Arenga Starch , Rice Flour and Sorghum. IIOP Conf. Series: Materials Science and Engineering, 1053, 1–6. https://doi.org/10.1088/1757-899X/1053/1/012115
Kamsiati, E., Rahayu, E., & Herawati, H. (2021). Pengaruh Konsentrasi Binder dan Lama Waktu Pengukusan Terhadap Karakteristik Mi Sorgum Bebas Gluten. Agrointek, 15(1), 134–145.
Kaur, M., Sandhu, K. S., Ahlawat, R. P., & Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. Journal of Food Science and Technology, 52(3), 1642–1648. https://doi.org/10.1007/s13197-013-1136-2
Komuna, H. (2018). Improvement of sago processing machinery. In H. Ehara, Yu. Toyoda, & D. V Jhonson (Eds.), Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. Springer Publishing Company. https://doi.org/10.1007/978-981-10-5269-9_17
Krishnakumar, T., Sajeev, M. S., Raju, S., Giri, N. A., Pradeepika, C., & Bansode, V. (2020). Studies on the development of cassava based reconstituted dry starch sago with modified starch as binder and characterization of its physico-functional properties. Ournal of Environmental Biology, 41(July), 840–844.
Li, Q., Liu, S., Obadi, M., Jiang, Y., Zhao, F., Jiang, S., & Xu, B. (2020). The impact of starch degradation induced by pre-gelatinization treatment on the quality of noodles. Food Chemistry, 302(March 2019), 125267. https://doi.org/10.1016/j.foodchem.2019.125267
Maherawati, Lestari, R. B., & Haryadi. (2012). Karakteristik Pati dari Batang Sagu Kalimantan Barat pada Tahap Pertumbuhan yang Berbeda. AgriTECH, 31(1), 9–13.
Mandel, J. H. (2016). Penggunaan Pati Sagu Termodifikasi Dengan Heat Moisture Treatment Sebagai Bahan Substitusi Untuk Pembuatan Mi Kering The Use Of Heat Moisture Treatment- Modified Sago Starch As A Substitute Ingredient For Dried Noodle Product. Jurnal Penelitian Teknologi Industri, 8(1), 57–72.
Martinez, M. M., Li, C., Okoniewska, M., Mukherjee, I., Vellucci, D., & Hamaker, B. (2018). Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydrate Polymers, 197(June), 531–539. https://doi.org/10.1016/j.carbpol.2018.06.021
Nisah, K. (2018). Study Pengaruh Kandungan Amilosa Dan Amilopektin Umbi-Umbian Terhadap Karakteristik Fisik Plastik Biodegradable Dengan Plastizicer Gliserol. BIOTIK: Jurnal Ilmiah Biologi Teknologi Dan Kependidikan, 5(2), 106. https://doi.org/10.22373/biotik.v5i2.3018
Polnaya, F. J., Breemer, R., Augustyn, G. H., & Tuhumury, H. C. D. (2015). Karakteristik Sifat-Sifat Fisiko-Kimia Pati Ubi Jalar, Ubi Kayu, Keladi dan Sagu. Agriniimal, 5(1), 37–42.
Polnaya, F. J., Huwae, A. A., Tetelepta, G., Teknologi, J., Pertanian, H., Pertanian, F., Pattimura, U., & Poka, K. (2018). Karakteristik Sifat Fisiko-Kimia dan Fungsional Pati Sagu Ihur ( Metroxylon sylvestre ) Dimodifikasi dengan Hidrolisis Asam. Agritech, 38(1), 7–15.
Raharja, K. T., Chabibah, A. N., Sudarmayasa, I. W., & Romadhoni, I. F. (2021). Pembuatan Boba Kopi Biji Salak Sebagai Pangan Fungsional Sumber Antioksidan. Jurnal Technopreneur (JTech), 9(1), 7–13. https://doi.org/10.30869/jtech.v9i1.690
Rashid, R. S. A., Dos Mohamed, A. M., Achudan, S. N., & Mittis, P. (2020). Physicochemical properties of resistant starch type III from sago starch at different palm stages. Materials Today: Proceedings, 31(1), 150–154. https://doi.org/10.1016/j.matpr.2020.01.511
Romero-Bastida, C. A., Tapia-Bl ́acido, D. ., ́endez-Montealvo, G., Bello-P ́erez, L. A., Vel ́azquez, G., & Alvarez-Ramirez, J. (2016). Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydrate Polymers, 152, 351–360. https://doi.org/10.1016/j.carbpol.2016.07.009
Rosani, O., Susanty, D., & Triyanto, A. (2019). Angka Kapang Dan Khamir Pada Lada Putih Asal Bangka. Jurnal Sains Natural, 5(2), 101. https://doi.org/10.31938/jsn.v5i2.260
Rosida, D. F. (2019). Inovasi teknologi pengolahan sagu (Y. M. Supriyadi (ed.); Pertama). CV. Mitra Sumber Rejeki.
Sakkara, S., Nataraj, D., Venkatesh, K., & Reddy, N. (2019). Influence of Alkali Treatment on the Physicochemical and Mechanical Properties of Starch Chitosan Films. Starch/Staerke, 71(3–4), 1–22. https://doi.org/10.1002/star.201800084
Suryani, S. (2022). Inovasi Boba Sagu dengan Kearifan Lokal Desa Sungai Tohor Sebagai Produk Milenial yang Memikat Boba Sago Innovation with Local Wisdom of Sungai Tohor Village as an Attractive Millennial Product. JCSPA: Journal Of Community Services Public Affairs, 2(4), 164–174.
Teng, L. Y., Chin, N. L., & Yusof, Y. A. (2013). Food Hydrocolloids Rheological and textural studies of fresh and freeze-thawed native sago starch e sugar gels . II . Comparisons with other starch sources and reheating effects. Food Hydrocolloids, 31(2), 156–165. https://doi.org/10.1016/j.foodhyd.2012.11.002
USDA. (2019). Tapioca, pearl, dry. https://fdc.nal.usda.gov/fdcapp.html#/fooddetails/169717/nutrients
Uthumporn, U., Wahidah, N., & Karim, A. A. (2014). Physicochemical properties of starch from sago (Metroxylon Sagu) palm grown in mineral soil at different growth stages. IOP Conference Series: Materials Science and Engineering, 62(1), 1–11. https://doi.org/10.1088/1757-899X/62/1/012026
Wattanachant, S., Syed Muhammad, S. K., Mat Hashim, D., & Abd Rahman, R. (2002). Suitability of sago starch as a base for dual-modification. Songklanakarin Journal of Science and Technology, 24(3), 431–438.
Yadav, B. S., Yadav, R. B., Kumari, M., & Khatkar, B. S. (2014). LWT - Food Science and Technology Studies on suitability of wheat fl our blends with sweet potato, colocasia and water chestnut flours for noodle making. LWT - Food Science and Technology, 57(1), 352–358. https://doi.org/10.1016/j.lwt.2013.12.042
Yuliani, H., Yuliana, N. D., Budijanto, S.,. (2015). Formulasi Mi Kering Sagu dengan Substitusi Tepung Kacang Hijau. Agritech, 35(4), 387–395.
Zailani, M. A., Kamilah, H., Husaini, A., Awang Seruji, A. Z. R., & Sarbini, S. R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids, 122(July 2021), 107042. https://doi.org/10.1016/j.foodhyd.2021.107042