Main Article Content
Abstract
Bahan baku utama busa poliuretan fleksibel (PUF) adalah poliol yang berasal dari turunan minyak bumi. Poliol tersebut membutuhkan waktu lama untuk terurai. Sintesis PUF dari poliol minyak kelapa sawit dapat meningkatkan kemampuan biodegradasinya. Penelitian ini bertujuan untuk menguji kemampuan biodegradasi PUF berbasis poliol minyak kelapa sawit dalam air laut. Minyak kelapa sawit diubah menjadi poliol melalui reaksi epoksidasi dan hidroksilasi. Poliol minyak kelapa sawit disubstitusi dengan PEG-400 dan poliol komersial untuk meningkatkan karakteristik PUF. Sistem poliol (poliol minyak kelapa sawit 60%:PEG-400 40%; poliol minyak kelapa sawit 50%:PEG-400 50%; poliol minyak kelapa sawit 60%:poliol komersial 40%; poliol minyak kelapa sawit 50%:poliol komersial 50%) direaksikan dengan toluen diisosianat (TDI) untuk membentuk PUF. Perlakuan pada penelitian ini adalah PUF dengan komposisi poliol yang berbeda (PUF1, PUF2, PUF3, PUF4, dan Kontrol). PUF dilakukan biodegradasi di dalam air laut selama 30 hari. Penurunan berat sampel busa diukur setiap lima hari. Pengamatan FTIR, XRD, TGA, dan SEM dilakukan setelah sampel terurai selama 30 hari. Hasil penelitian menunjukkan bahwa PUF1 memiliki kemampuan biodegradasi tertinggi dalam air laut, dengan susut berat sebesar 44%. FTIR menunjukkan bahwa ikatan ester pada PUF1 telah terurai dan menghilangnya puncak serapan gugus isosianat (-NCO) akibat proses biodegradasi. XRD mengidentifikasi adanya kristal PEG-400 yang membutuhkan waktu untuk terurai. Namun PEG-400 lebih mudah terurai dibandingkan poliol komersial. SEM menunjukkan bahwa permukaan PUF1 menjadi kasar dan kerangka sel busa menjadi rusak.
Article Details
Copyright (c) 2025 Neswati Neswati, Kurnia Harlina Dewi, Anggun Ayu Selvia, Tri Larasati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Ali, A., Ul Amin, B., Yu, W., Gui, T., Cong, W., Zhang, K., Tong, Z., Hu, J., Zhan, X., & Zhang, Q. (2023). Eco-Friendly Biodegra-dable Polyurethane Based Coating for Antibacterial and Antifouling Performance. Chinese Journal of Chemical Engineering, 54, 80–88. https://doi.org/10.1016/j.cjche.2022.09.004
- Asakura, T., Ibe, Y., Jono, T., & Naito, A. (2021). Structure and Dynamics of Biodegradable Polyurethane-Silk Fibroin Composite Materials in The Dry and Hydrated States Studied Using 13C Solid-State NMR Spectroscopy. Polymer Degradation and Stability, 190, 109645. https://doi.org/10.1016/j.2021.109645
- Briassoulis, D., Pikasi, A., Papardaki, N. G., & Mistriotis, A. (2020). Aerobic Biodegradation of Bio-Based Plastics in The Seawater/Sediment Interface (Sublittoral) Marine Environment of the Coastal Zone – Test Method Under Controlled Laboratory Conditions. Science of the Total Environment, 722. https://doi.org/10.1016/j.scitotenv.2020.137748
- Burelo, M., Gaytán, I., Loza-Tavera, H., Cruz-Morales, J. A., Zárate-Saldaña, D., Cruz-Gómez, M. J., & Gutiérrez, S. (2022). Synthesis, Characterization and Biodegrada-tion Studies of Polyurethanes: Effect Of Unsaturation on Biodegradability. Chemosphere, 307(September 2021). https://doi.org/10.1016/j.chemosphere.2022.136136
- Chandure, A. S., Bhusari, G. S., & Umare, S. S. (2014). Synthesis, Characterization and Biodegrada-tion Studies of Poly(Ester-Urethane)s. Emerging Materials Research, 3(2), 91–100. https://doi.org/10.1680/emr.13.00022
- Chaudhuri, H., & Karak, N. (2020). Water Dispersed Bio-Derived Transparent Polyurethane: Synthesis, Properties Including Chemical Resistance, UV-Aging, and Biodegradability. Progress in Organic Coatings, 146(May), 105730. https://doi.org/10.1016/j.porgcoat.2020.105730
- Choi, H. J., & Kim, J. H. (2020). Static and dynamic Comfort Properties Of Polyurethane Foams Including a Flexible Amine Crosslinker. Journal of Industrial and Engineering Chemistry, 90, 260–265. https://doi.org/10.1016/j.jiec..07.021
- Contreras, J., Valdés, O., Mirabal-Gallardo, Y., de la Torre, A. F., Navarrete, J., Lisperguer, J., Durán-Lara, E. F., Santos, L. S., Nachtigall, F. M., Cabrera-Barjas, G., & Abril, D. (2020). Development of Eco-Friendly Polyurethane Foams Based on Lesquerella fendleri (A. Grey) Oil-Based Polyol. European Polymer Journal, 128(January), 109606. https://doi.org/10.1016/j.eurpolymj.2020.109606
- De Souza, F. M., Kahol, P. K., & Gupta, R. K. (2021). Introduction to Polyurethane Chemistry [Chapter]. ACS Symposium Series, 1380, 1–24. https://doi.org/10.1021/bk-2021-1380.ch001
- Dimassi, S. N., Hahladakis, J. N., Chamkha, M., Ahmad, M. I., Al-Ghouti, M. A., & Sayadi, S. (2024). Investigation on The Effect of Several Parameters Involved in The Biodegradation of Polyethy-lene (PE) and Low-Density Polyethylene (LDPE) Under Various Seawater Environments. Science of the Total Environment, 912(November 2023). https://doi.org/10.1016/j.scitotenv.2023.168870
- Firdaus, F. E. (2014). Synthesis and Characterization of Soy-Based Polyurethane Foam with Utilization of Ethylene Glycol in Polyol. Makara Journal of Technology, 18(1), 11–16. https://doi.org/10.7454/mst.v18i1.338
- Guo, Y., An, X., & Qian, X. (2023). Biodegradable and Reprocessable Cellulose-Based Polyurethane Films for Bonding and Heat Dissipation in Transparent Electronic Devices. Industrial Crops and Products, 193 (December 2022), 116247. https://doi.org/10.1016/j.indcrop.2023.116247
- Jia, P., Ma, C., Lu, J., Yang, W., Jiang, X., Jiang, G., Yin, Z., Qiu, Y., Qian, L., Yu, X., Hu, Y., Hu, W., & Wang, B. (2022). Design of Copper salt@graphene Nanohy-brids to Accomplish Excellent Resilience and Superior Fire Safety For Flexible Polyurethane Foam. Journal of Colloid and Interface Science, 606, 1205–1218. https://doi.org/10.1016/j.jcis.2021.08.139
- Jiang, Q., Li, P., Liu, Y., & Zhu, P. (2022). Green Flame-Retardant Flexible Polyurethane Foam Based on Polyphenol-Iron-Phytic Acid Network To Improve The Fire Safety. Composites Part B: Engineering, 239(March), 109958. https://doi.org/10.1016/j.compositesb.2022.109958
- Kemona, A., & Piotrowska, M. (2020). Polyurethane Recycling and Disposal: Methods and Prospects. Polymers, 12(8). https://doi.org/10. 3390/POLYM12081752
- Kumar, S., Prakash, R., & Maiti, P. (2022). Redox Mediation Through Integrating Chain Extenders in Active Ionomer Polyurethane Hard Segments in CdS Quantum Dot Sensitized Solar Cell. Solar Energy, 231(August 2021), 985–1001. https://doi.org/10.1016/j.solener.2021.12.043
- Lim, W. Bin, Min, J. G., Seo, M. J., Lee, J. H., Bae, J. H., & Huh, P. H. (2023). Synthesis and Properties of Biodegradable Waterborne Polyu-rethane Modified as Castor Oil. Results in Materials, 19(May), 100433. https://doi.org/10.1016/j.rinma.2023.100433
- Murillo-Morales, G., Sethupathy, S., Zhang, M., Xu, L., Ghaznavi, A., Xu, J., Yang, B., Sun, J., & Zhu, D. (2023). Characterization and 3D Printing of a Biodegradable Polylactic Acid/Thermoplastic Polyurethane Blend With Laccase-Modified Lignin as a Nucleating Agent. International Journal of Biological Macromolecules, 236 (December 2022), 123881. https://doi.org/10.1016/j.ijbiomac.2023.123881
- Nabipour, H., Wang, X., Song, L., & Hu, Y. (2020). A Fully Bio-Based Coating Made From Alginate, Chitosan and Hydroxyapatite for Protecting Flexible Polyurethane Foam From Fire. Carbohydrate Polymers, 246(May), 116641. https://doi.org/10.1016/j.carbpol.2020.116641
- Naureen, B., Haseeb, A. S. M. A., Basirun, W. J., & Muhamad, F. (2021). Synthesis and Degradation of 3D Biodegradable Polyurethane Foam Scaffolds Based on Poly (Propylene Fumarate) and Poly [(R)-3-hydroxybutyrate]. Materials Today Communications, 28(April), 102536. https://doi.org/10.1016/j.mtcomm.2021.102536
- Neswati, Nazir, N., Arief, S., & Yusniwati. (2023). Improvement of Flexible Polyurethane Foam Characteristics of Palm Oil Polyols with the Addition of Polyethylene Glycol-400. IOP Conference Series: Earth and Environmental Science, 1228(1), 012031. https://doi.org/10.1088/1755-1315/1228/1/012031
- Nilawar, S., & Chatterjee, K. (2022). Olive Oil-Derived Degradable Polyurethanes for Bone Tissue Regeneration. Industrial Crops and Products, 185(May), 115136. https://doi.org/10.1016/j.indcrop.2022.115136
- Peyrton, J., & Avérous, L. (2021). Structure-Properties Relationships of Cellular Materials From Biobased Polyurethane Foams. Materials Science and Engineering R: Reports, 145(February). https://doi.org/10.1016/j.mser.2021.100608
- Pradana, H., & Galib, M. (2021). Mapping Marine Debris in Coastal Area Padang City. Asian Journal of Aquatic Sciences, 4(3), 221–224.
- Prociak, A., Malewska, E., Kurańska, M., Bąk, S., & Budny, P. (2018). Flexible Polyurethane Foams Synthesized With Palm Oil-Based Bio-Polyols Obtained With The Use of Different Oxirane Ring Opener. Industrial Crops and Products, 115(May 2017), 69–77. https://doi.org/10.1016/j.indcrop.2018.02.008
- Rao, W. H., Liao, W., Wang, H., Zhao, H. B., & Wang, Y. Z. (2018). Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Reactive Phosphorus-Containing Polyol and Expandable Graphite. Journal of Hazardous Materials, 360(March), 651–660. https://doi.org/10.1016/j.jhazmat.2018.08.053
- Sultan, M., Jamal, Z., Jubeen, F., Farooq, A., Bibi, I., Uroos, M., Chaudhry, H., Alissa, S. A., & Iqbal, M. (2021). Green Synthesis of Biodegradable Polyurethane And Castor Oil-Based Composite For Benign Transformation of Methylene Blue. Arabian Journal of Chemistry, 14(12), 103417. https://doi.org/10.1016/j.arabjc.2021.103417
- Thangavelu, S. A. G., Mukherjee, M., Layana, K., Dinesh Kumar, C., Sulthana, Y. R., Rohith Kumar, R., Ananthan, A., Muthulakshmi, V., & Mandal, A. B. (2020). Biodegradable Polyurethanes Foam and Foam Fullerenes Nanocom-posite Strips By One-Shot Moulding: Physicochemical and Mechanical properties. Materials Science in Semiconductor Processing, 112(April 2019), 105018. https://doi.org/10.1016/j.mssp.2020.105018
- Uram, K., Prociak, A., Vevere, L., Pomilovskis, R., Cabulis, U., & Kirpluks, M. (2021). Natural Oil-Based Rigid Polyurethane Foam Thermal Insulation Applicable At Cryogenic Temperatures. Poly-mers, 13(24). https://doi.org/10.3390/polym13244276
- Xu, C., & Hong, Y. (2022a). Rational Design of Biodegradable Thermoplastic Polyurethanes For Tissue Repair. Bioactive Materials, 15(June 2021), 250–271. https://doi.org/10.1016/j.bioactmat.2021.11.029
- Xu, C., & Hong, Y. (2022b). Rational Design of Biodegradable Thermoplastic Polyurethanes For Tissue Repair. Bioactive Materials, 15(November 2021), 250–271. https://doi.org/10.1016/j.bioactmat.2021.11.029
- Xu, W., Chen, R., Du, Y., & Wang, G. (2020). Design Water-Soluble Phenolic/Zeolitic Imidazolate Framework-67 Flame Retardant Coating Via Layer-by-Layer Assembly Technology: Enhanced Flame Retardancy and Smoke Suppression of Flexible Polyurethane Foam. Polymer Degradation and Stability, 176, 109152. https://doi.org/10.1016/j.polymdegradstab.2020.109152
References
Ali, A., Ul Amin, B., Yu, W., Gui, T., Cong, W., Zhang, K., Tong, Z., Hu, J., Zhan, X., & Zhang, Q. (2023). Eco-Friendly Biodegra-dable Polyurethane Based Coating for Antibacterial and Antifouling Performance. Chinese Journal of Chemical Engineering, 54, 80–88. https://doi.org/10.1016/j.cjche.2022.09.004
Asakura, T., Ibe, Y., Jono, T., & Naito, A. (2021). Structure and Dynamics of Biodegradable Polyurethane-Silk Fibroin Composite Materials in The Dry and Hydrated States Studied Using 13C Solid-State NMR Spectroscopy. Polymer Degradation and Stability, 190, 109645. https://doi.org/10.1016/j.2021.109645
Briassoulis, D., Pikasi, A., Papardaki, N. G., & Mistriotis, A. (2020). Aerobic Biodegradation of Bio-Based Plastics in The Seawater/Sediment Interface (Sublittoral) Marine Environment of the Coastal Zone – Test Method Under Controlled Laboratory Conditions. Science of the Total Environment, 722. https://doi.org/10.1016/j.scitotenv.2020.137748
Burelo, M., Gaytán, I., Loza-Tavera, H., Cruz-Morales, J. A., Zárate-Saldaña, D., Cruz-Gómez, M. J., & Gutiérrez, S. (2022). Synthesis, Characterization and Biodegrada-tion Studies of Polyurethanes: Effect Of Unsaturation on Biodegradability. Chemosphere, 307(September 2021). https://doi.org/10.1016/j.chemosphere.2022.136136
Chandure, A. S., Bhusari, G. S., & Umare, S. S. (2014). Synthesis, Characterization and Biodegrada-tion Studies of Poly(Ester-Urethane)s. Emerging Materials Research, 3(2), 91–100. https://doi.org/10.1680/emr.13.00022
Chaudhuri, H., & Karak, N. (2020). Water Dispersed Bio-Derived Transparent Polyurethane: Synthesis, Properties Including Chemical Resistance, UV-Aging, and Biodegradability. Progress in Organic Coatings, 146(May), 105730. https://doi.org/10.1016/j.porgcoat.2020.105730
Choi, H. J., & Kim, J. H. (2020). Static and dynamic Comfort Properties Of Polyurethane Foams Including a Flexible Amine Crosslinker. Journal of Industrial and Engineering Chemistry, 90, 260–265. https://doi.org/10.1016/j.jiec..07.021
Contreras, J., Valdés, O., Mirabal-Gallardo, Y., de la Torre, A. F., Navarrete, J., Lisperguer, J., Durán-Lara, E. F., Santos, L. S., Nachtigall, F. M., Cabrera-Barjas, G., & Abril, D. (2020). Development of Eco-Friendly Polyurethane Foams Based on Lesquerella fendleri (A. Grey) Oil-Based Polyol. European Polymer Journal, 128(January), 109606. https://doi.org/10.1016/j.eurpolymj.2020.109606
De Souza, F. M., Kahol, P. K., & Gupta, R. K. (2021). Introduction to Polyurethane Chemistry [Chapter]. ACS Symposium Series, 1380, 1–24. https://doi.org/10.1021/bk-2021-1380.ch001
Dimassi, S. N., Hahladakis, J. N., Chamkha, M., Ahmad, M. I., Al-Ghouti, M. A., & Sayadi, S. (2024). Investigation on The Effect of Several Parameters Involved in The Biodegradation of Polyethy-lene (PE) and Low-Density Polyethylene (LDPE) Under Various Seawater Environments. Science of the Total Environment, 912(November 2023). https://doi.org/10.1016/j.scitotenv.2023.168870
Firdaus, F. E. (2014). Synthesis and Characterization of Soy-Based Polyurethane Foam with Utilization of Ethylene Glycol in Polyol. Makara Journal of Technology, 18(1), 11–16. https://doi.org/10.7454/mst.v18i1.338
Guo, Y., An, X., & Qian, X. (2023). Biodegradable and Reprocessable Cellulose-Based Polyurethane Films for Bonding and Heat Dissipation in Transparent Electronic Devices. Industrial Crops and Products, 193 (December 2022), 116247. https://doi.org/10.1016/j.indcrop.2023.116247
Jia, P., Ma, C., Lu, J., Yang, W., Jiang, X., Jiang, G., Yin, Z., Qiu, Y., Qian, L., Yu, X., Hu, Y., Hu, W., & Wang, B. (2022). Design of Copper salt@graphene Nanohy-brids to Accomplish Excellent Resilience and Superior Fire Safety For Flexible Polyurethane Foam. Journal of Colloid and Interface Science, 606, 1205–1218. https://doi.org/10.1016/j.jcis.2021.08.139
Jiang, Q., Li, P., Liu, Y., & Zhu, P. (2022). Green Flame-Retardant Flexible Polyurethane Foam Based on Polyphenol-Iron-Phytic Acid Network To Improve The Fire Safety. Composites Part B: Engineering, 239(March), 109958. https://doi.org/10.1016/j.compositesb.2022.109958
Kemona, A., & Piotrowska, M. (2020). Polyurethane Recycling and Disposal: Methods and Prospects. Polymers, 12(8). https://doi.org/10. 3390/POLYM12081752
Kumar, S., Prakash, R., & Maiti, P. (2022). Redox Mediation Through Integrating Chain Extenders in Active Ionomer Polyurethane Hard Segments in CdS Quantum Dot Sensitized Solar Cell. Solar Energy, 231(August 2021), 985–1001. https://doi.org/10.1016/j.solener.2021.12.043
Lim, W. Bin, Min, J. G., Seo, M. J., Lee, J. H., Bae, J. H., & Huh, P. H. (2023). Synthesis and Properties of Biodegradable Waterborne Polyu-rethane Modified as Castor Oil. Results in Materials, 19(May), 100433. https://doi.org/10.1016/j.rinma.2023.100433
Murillo-Morales, G., Sethupathy, S., Zhang, M., Xu, L., Ghaznavi, A., Xu, J., Yang, B., Sun, J., & Zhu, D. (2023). Characterization and 3D Printing of a Biodegradable Polylactic Acid/Thermoplastic Polyurethane Blend With Laccase-Modified Lignin as a Nucleating Agent. International Journal of Biological Macromolecules, 236 (December 2022), 123881. https://doi.org/10.1016/j.ijbiomac.2023.123881
Nabipour, H., Wang, X., Song, L., & Hu, Y. (2020). A Fully Bio-Based Coating Made From Alginate, Chitosan and Hydroxyapatite for Protecting Flexible Polyurethane Foam From Fire. Carbohydrate Polymers, 246(May), 116641. https://doi.org/10.1016/j.carbpol.2020.116641
Naureen, B., Haseeb, A. S. M. A., Basirun, W. J., & Muhamad, F. (2021). Synthesis and Degradation of 3D Biodegradable Polyurethane Foam Scaffolds Based on Poly (Propylene Fumarate) and Poly [(R)-3-hydroxybutyrate]. Materials Today Communications, 28(April), 102536. https://doi.org/10.1016/j.mtcomm.2021.102536
Neswati, Nazir, N., Arief, S., & Yusniwati. (2023). Improvement of Flexible Polyurethane Foam Characteristics of Palm Oil Polyols with the Addition of Polyethylene Glycol-400. IOP Conference Series: Earth and Environmental Science, 1228(1), 012031. https://doi.org/10.1088/1755-1315/1228/1/012031
Nilawar, S., & Chatterjee, K. (2022). Olive Oil-Derived Degradable Polyurethanes for Bone Tissue Regeneration. Industrial Crops and Products, 185(May), 115136. https://doi.org/10.1016/j.indcrop.2022.115136
Peyrton, J., & Avérous, L. (2021). Structure-Properties Relationships of Cellular Materials From Biobased Polyurethane Foams. Materials Science and Engineering R: Reports, 145(February). https://doi.org/10.1016/j.mser.2021.100608
Pradana, H., & Galib, M. (2021). Mapping Marine Debris in Coastal Area Padang City. Asian Journal of Aquatic Sciences, 4(3), 221–224.
Prociak, A., Malewska, E., Kurańska, M., Bąk, S., & Budny, P. (2018). Flexible Polyurethane Foams Synthesized With Palm Oil-Based Bio-Polyols Obtained With The Use of Different Oxirane Ring Opener. Industrial Crops and Products, 115(May 2017), 69–77. https://doi.org/10.1016/j.indcrop.2018.02.008
Rao, W. H., Liao, W., Wang, H., Zhao, H. B., & Wang, Y. Z. (2018). Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Reactive Phosphorus-Containing Polyol and Expandable Graphite. Journal of Hazardous Materials, 360(March), 651–660. https://doi.org/10.1016/j.jhazmat.2018.08.053
Sultan, M., Jamal, Z., Jubeen, F., Farooq, A., Bibi, I., Uroos, M., Chaudhry, H., Alissa, S. A., & Iqbal, M. (2021). Green Synthesis of Biodegradable Polyurethane And Castor Oil-Based Composite For Benign Transformation of Methylene Blue. Arabian Journal of Chemistry, 14(12), 103417. https://doi.org/10.1016/j.arabjc.2021.103417
Thangavelu, S. A. G., Mukherjee, M., Layana, K., Dinesh Kumar, C., Sulthana, Y. R., Rohith Kumar, R., Ananthan, A., Muthulakshmi, V., & Mandal, A. B. (2020). Biodegradable Polyurethanes Foam and Foam Fullerenes Nanocom-posite Strips By One-Shot Moulding: Physicochemical and Mechanical properties. Materials Science in Semiconductor Processing, 112(April 2019), 105018. https://doi.org/10.1016/j.mssp.2020.105018
Uram, K., Prociak, A., Vevere, L., Pomilovskis, R., Cabulis, U., & Kirpluks, M. (2021). Natural Oil-Based Rigid Polyurethane Foam Thermal Insulation Applicable At Cryogenic Temperatures. Poly-mers, 13(24). https://doi.org/10.3390/polym13244276
Xu, C., & Hong, Y. (2022a). Rational Design of Biodegradable Thermoplastic Polyurethanes For Tissue Repair. Bioactive Materials, 15(June 2021), 250–271. https://doi.org/10.1016/j.bioactmat.2021.11.029
Xu, C., & Hong, Y. (2022b). Rational Design of Biodegradable Thermoplastic Polyurethanes For Tissue Repair. Bioactive Materials, 15(November 2021), 250–271. https://doi.org/10.1016/j.bioactmat.2021.11.029
Xu, W., Chen, R., Du, Y., & Wang, G. (2020). Design Water-Soluble Phenolic/Zeolitic Imidazolate Framework-67 Flame Retardant Coating Via Layer-by-Layer Assembly Technology: Enhanced Flame Retardancy and Smoke Suppression of Flexible Polyurethane Foam. Polymer Degradation and Stability, 176, 109152. https://doi.org/10.1016/j.polymdegradstab.2020.109152