Main Article Content

Abstract

Bahan baku utama busa poliuretan fleksibel (PUF) adalah poliol yang berasal dari turunan minyak bumi. Poliol tersebut membutuhkan waktu lama untuk terurai. Sintesis PUF dari poliol minyak kelapa sawit dapat meningkatkan kemampuan biodegradasinya. Penelitian ini bertujuan untuk menguji kemampuan biodegradasi PUF berbasis poliol minyak kelapa sawit dalam air laut. Minyak kelapa sawit diubah menjadi poliol melalui reaksi epoksidasi dan hidroksilasi. Poliol minyak kelapa sawit disubstitusi dengan PEG-400 dan poliol komersial untuk meningkatkan karakteristik PUF. Sistem poliol (poliol minyak kelapa sawit 60%:PEG-400 40%; poliol minyak kelapa sawit 50%:PEG-400 50%;  poliol minyak kelapa sawit 60%:poliol komersial 40%;  poliol minyak kelapa sawit 50%:poliol komersial 50%) direaksikan dengan toluen diisosianat (TDI) untuk membentuk PUF.  Perlakuan pada penelitian ini adalah PUF dengan komposisi poliol yang berbeda (PUF1, PUF2, PUF3, PUF4, dan Kontrol). PUF dilakukan biodegradasi di dalam air laut selama 30 hari. Penurunan berat sampel busa diukur setiap lima hari. Pengamatan FTIR, XRD, TGA, dan SEM dilakukan setelah sampel terurai selama 30 hari. Hasil penelitian menunjukkan bahwa PUF1 memiliki kemampuan biodegradasi tertinggi dalam air laut, dengan susut berat sebesar 44%. FTIR menunjukkan bahwa ikatan ester pada PUF1 telah terurai dan menghilangnya puncak serapan gugus isosianat (-NCO) akibat proses biodegradasi. XRD mengidentifikasi adanya kristal PEG-400 yang membutuhkan waktu untuk terurai. Namun PEG-400 lebih mudah terurai dibandingkan poliol komersial. SEM menunjukkan bahwa permukaan PUF1 menjadi kasar dan kerangka sel busa menjadi rusak.

Article Details

How to Cite
Neswati, N., Dewi, K. H., Selvia, A. A., & Larasati, T. (2025). EVALUASI BUSA POLIURETAN FLEKSIBEL BIODEGRADABLE BERBASIS POLIOL MINYAK KELAPA SAWIT: KEMAMPUAN BIODEGRADASI DALAM AIR LAUT. Jurnal Agroindustri, 15(1), 53–67. https://doi.org/10.31186/jagroindustri.15.1.53-67

References

  1. Ali, A., Ul Amin, B., Yu, W., Gui, T., Cong, W., Zhang, K., Tong, Z., Hu, J., Zhan, X., & Zhang, Q. (2023). Eco-Friendly Biodegra-dable Polyurethane Based Coating for Antibacterial and Antifouling Performance. Chinese Journal of Chemical Engineering, 54, 80–88. https://doi.org/10.1016/j.cjche.2022.09.004
  2. Asakura, T., Ibe, Y., Jono, T., & Naito, A. (2021). Structure and Dynamics of Biodegradable Polyurethane-Silk Fibroin Composite Materials in The Dry and Hydrated States Studied Using 13C Solid-State NMR Spectroscopy. Polymer Degradation and Stability, 190, 109645. https://doi.org/10.1016/j.2021.109645
  3. Briassoulis, D., Pikasi, A., Papardaki, N. G., & Mistriotis, A. (2020). Aerobic Biodegradation of Bio-Based Plastics in The Seawater/Sediment Interface (Sublittoral) Marine Environment of the Coastal Zone – Test Method Under Controlled Laboratory Conditions. Science of the Total Environment, 722. https://doi.org/10.1016/j.scitotenv.2020.137748
  4. Burelo, M., Gaytán, I., Loza-Tavera, H., Cruz-Morales, J. A., Zárate-Saldaña, D., Cruz-Gómez, M. J., & Gutiérrez, S. (2022). Synthesis, Characterization and Biodegrada-tion Studies of Polyurethanes: Effect Of Unsaturation on Biodegradability. Chemosphere, 307(September 2021). https://doi.org/10.1016/j.chemosphere.2022.136136
  5. Chandure, A. S., Bhusari, G. S., & Umare, S. S. (2014). Synthesis, Characterization and Biodegrada-tion Studies of Poly(Ester-Urethane)s. Emerging Materials Research, 3(2), 91–100. https://doi.org/10.1680/emr.13.00022
  6. Chaudhuri, H., & Karak, N. (2020). Water Dispersed Bio-Derived Transparent Polyurethane: Synthesis, Properties Including Chemical Resistance, UV-Aging, and Biodegradability. Progress in Organic Coatings, 146(May), 105730. https://doi.org/10.1016/j.porgcoat.2020.105730
  7. Choi, H. J., & Kim, J. H. (2020). Static and dynamic Comfort Properties Of Polyurethane Foams Including a Flexible Amine Crosslinker. Journal of Industrial and Engineering Chemistry, 90, 260–265. https://doi.org/10.1016/j.jiec..07.021
  8. Contreras, J., Valdés, O., Mirabal-Gallardo, Y., de la Torre, A. F., Navarrete, J., Lisperguer, J., Durán-Lara, E. F., Santos, L. S., Nachtigall, F. M., Cabrera-Barjas, G., & Abril, D. (2020). Development of Eco-Friendly Polyurethane Foams Based on Lesquerella fendleri (A. Grey) Oil-Based Polyol. European Polymer Journal, 128(January), 109606. https://doi.org/10.1016/j.eurpolymj.2020.109606
  9. De Souza, F. M., Kahol, P. K., & Gupta, R. K. (2021). Introduction to Polyurethane Chemistry [Chapter]. ACS Symposium Series, 1380, 1–24. https://doi.org/10.1021/bk-2021-1380.ch001
  10. Dimassi, S. N., Hahladakis, J. N., Chamkha, M., Ahmad, M. I., Al-Ghouti, M. A., & Sayadi, S. (2024). Investigation on The Effect of Several Parameters Involved in The Biodegradation of Polyethy-lene (PE) and Low-Density Polyethylene (LDPE) Under Various Seawater Environments. Science of the Total Environment, 912(November 2023). https://doi.org/10.1016/j.scitotenv.2023.168870
  11. Firdaus, F. E. (2014). Synthesis and Characterization of Soy-Based Polyurethane Foam with Utilization of Ethylene Glycol in Polyol. Makara Journal of Technology, 18(1), 11–16. https://doi.org/10.7454/mst.v18i1.338
  12. Guo, Y., An, X., & Qian, X. (2023). Biodegradable and Reprocessable Cellulose-Based Polyurethane Films for Bonding and Heat Dissipation in Transparent Electronic Devices. Industrial Crops and Products, 193 (December 2022), 116247. https://doi.org/10.1016/j.indcrop.2023.116247
  13. Jia, P., Ma, C., Lu, J., Yang, W., Jiang, X., Jiang, G., Yin, Z., Qiu, Y., Qian, L., Yu, X., Hu, Y., Hu, W., & Wang, B. (2022). Design of Copper salt@graphene Nanohy-brids to Accomplish Excellent Resilience and Superior Fire Safety For Flexible Polyurethane Foam. Journal of Colloid and Interface Science, 606, 1205–1218. https://doi.org/10.1016/j.jcis.2021.08.139
  14. Jiang, Q., Li, P., Liu, Y., & Zhu, P. (2022). Green Flame-Retardant Flexible Polyurethane Foam Based on Polyphenol-Iron-Phytic Acid Network To Improve The Fire Safety. Composites Part B: Engineering, 239(March), 109958. https://doi.org/10.1016/j.compositesb.2022.109958
  15. Kemona, A., & Piotrowska, M. (2020). Polyurethane Recycling and Disposal: Methods and Prospects. Polymers, 12(8). https://doi.org/10. 3390/POLYM12081752
  16. Kumar, S., Prakash, R., & Maiti, P. (2022). Redox Mediation Through Integrating Chain Extenders in Active Ionomer Polyurethane Hard Segments in CdS Quantum Dot Sensitized Solar Cell. Solar Energy, 231(August 2021), 985–1001. https://doi.org/10.1016/j.solener.2021.12.043
  17. Lim, W. Bin, Min, J. G., Seo, M. J., Lee, J. H., Bae, J. H., & Huh, P. H. (2023). Synthesis and Properties of Biodegradable Waterborne Polyu-rethane Modified as Castor Oil. Results in Materials, 19(May), 100433. https://doi.org/10.1016/j.rinma.2023.100433
  18. Murillo-Morales, G., Sethupathy, S., Zhang, M., Xu, L., Ghaznavi, A., Xu, J., Yang, B., Sun, J., & Zhu, D. (2023). Characterization and 3D Printing of a Biodegradable Polylactic Acid/Thermoplastic Polyurethane Blend With Laccase-Modified Lignin as a Nucleating Agent. International Journal of Biological Macromolecules, 236 (December 2022), 123881. https://doi.org/10.1016/j.ijbiomac.2023.123881
  19. Nabipour, H., Wang, X., Song, L., & Hu, Y. (2020). A Fully Bio-Based Coating Made From Alginate, Chitosan and Hydroxyapatite for Protecting Flexible Polyurethane Foam From Fire. Carbohydrate Polymers, 246(May), 116641. https://doi.org/10.1016/j.carbpol.2020.116641
  20. Naureen, B., Haseeb, A. S. M. A., Basirun, W. J., & Muhamad, F. (2021). Synthesis and Degradation of 3D Biodegradable Polyurethane Foam Scaffolds Based on Poly (Propylene Fumarate) and Poly [(R)-3-hydroxybutyrate]. Materials Today Communications, 28(April), 102536. https://doi.org/10.1016/j.mtcomm.2021.102536
  21. Neswati, Nazir, N., Arief, S., & Yusniwati. (2023). Improvement of Flexible Polyurethane Foam Characteristics of Palm Oil Polyols with the Addition of Polyethylene Glycol-400. IOP Conference Series: Earth and Environmental Science, 1228(1), 012031. https://doi.org/10.1088/1755-1315/1228/1/012031
  22. Nilawar, S., & Chatterjee, K. (2022). Olive Oil-Derived Degradable Polyurethanes for Bone Tissue Regeneration. Industrial Crops and Products, 185(May), 115136. https://doi.org/10.1016/j.indcrop.2022.115136
  23. Peyrton, J., & Avérous, L. (2021). Structure-Properties Relationships of Cellular Materials From Biobased Polyurethane Foams. Materials Science and Engineering R: Reports, 145(February). https://doi.org/10.1016/j.mser.2021.100608
  24. Pradana, H., & Galib, M. (2021). Mapping Marine Debris in Coastal Area Padang City. Asian Journal of Aquatic Sciences, 4(3), 221–224.
  25. Prociak, A., Malewska, E., Kurańska, M., Bąk, S., & Budny, P. (2018). Flexible Polyurethane Foams Synthesized With Palm Oil-Based Bio-Polyols Obtained With The Use of Different Oxirane Ring Opener. Industrial Crops and Products, 115(May 2017), 69–77. https://doi.org/10.1016/j.indcrop.2018.02.008
  26. Rao, W. H., Liao, W., Wang, H., Zhao, H. B., & Wang, Y. Z. (2018). Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Reactive Phosphorus-Containing Polyol and Expandable Graphite. Journal of Hazardous Materials, 360(March), 651–660. https://doi.org/10.1016/j.jhazmat.2018.08.053
  27. Sultan, M., Jamal, Z., Jubeen, F., Farooq, A., Bibi, I., Uroos, M., Chaudhry, H., Alissa, S. A., & Iqbal, M. (2021). Green Synthesis of Biodegradable Polyurethane And Castor Oil-Based Composite For Benign Transformation of Methylene Blue. Arabian Journal of Chemistry, 14(12), 103417. https://doi.org/10.1016/j.arabjc.2021.103417
  28. Thangavelu, S. A. G., Mukherjee, M., Layana, K., Dinesh Kumar, C., Sulthana, Y. R., Rohith Kumar, R., Ananthan, A., Muthulakshmi, V., & Mandal, A. B. (2020). Biodegradable Polyurethanes Foam and Foam Fullerenes Nanocom-posite Strips By One-Shot Moulding: Physicochemical and Mechanical properties. Materials Science in Semiconductor Processing, 112(April 2019), 105018. https://doi.org/10.1016/j.mssp.2020.105018
  29. Uram, K., Prociak, A., Vevere, L., Pomilovskis, R., Cabulis, U., & Kirpluks, M. (2021). Natural Oil-Based Rigid Polyurethane Foam Thermal Insulation Applicable At Cryogenic Temperatures. Poly-mers, 13(24). https://doi.org/10.3390/polym13244276
  30. Xu, C., & Hong, Y. (2022a). Rational Design of Biodegradable Thermoplastic Polyurethanes For Tissue Repair. Bioactive Materials, 15(June 2021), 250–271. https://doi.org/10.1016/j.bioactmat.2021.11.029
  31. Xu, C., & Hong, Y. (2022b). Rational Design of Biodegradable Thermoplastic Polyurethanes For Tissue Repair. Bioactive Materials, 15(November 2021), 250–271. https://doi.org/10.1016/j.bioactmat.2021.11.029
  32. Xu, W., Chen, R., Du, Y., & Wang, G. (2020). Design Water-Soluble Phenolic/Zeolitic Imidazolate Framework-67 Flame Retardant Coating Via Layer-by-Layer Assembly Technology: Enhanced Flame Retardancy and Smoke Suppression of Flexible Polyurethane Foam. Polymer Degradation and Stability, 176, 109152. https://doi.org/10.1016/j.polymdegradstab.2020.109152