Main Article Content

Abstract

Flexible polyurethane foams is the most produced foam compared to other types of polyurethane foams. The raw material for polyurethane foams is usually derived from petroleum polyols. The availability of petroleum which is getting thinner needs to be sought alternative raw materials for polyurethane foams from vegetable polyols (biopolyols). The relatively high productivity of palm oil causes the potential of palm oil to be used as raw material for flexible polyurethane foams compared to other vegetable oils. Various formulations and modifications that have been made in synthesizing flexible polyurethane foams from various types of biopolyols are aimed at increasing the usability and to produce flexible polyurethane foams with characteristics close to polyols made from petroleum-based foams.

Busa poliuretan fleksibel merupakan busa yang paling banyak diproduksi dibanding dengan jenis busa poliuretan yang lain. Bahan baku busa poliuretan biasanya berasal dari poliol minyak bumi. Semakin berkurangnya ketersediaan  minyak bumi,  maka perlu dicari alternatif  bahan baku busa poliuretan dari poliol nabati (biopoliol). Produktivitas kelapa sawit yang cukup tinggi menyebabkan minyak kelapa sawit cukup potensi digunakan sebagai bahan baku busa poliuretan dibandingkan dengan minyak nabati lain. Berbagai formulasi dan modifikasi yang telah dilakukan dalam mensintesis busa poliuretan fleksibel  dari berbagai jenis biopoliol  bertujuan untuk meningkatkan daya guna dan untuk menghasilkan busa poliuretan fleksibel dengan karakteristik mendekati busa berbahan baku poliol dari minyak  bumi.

Article Details

How to Cite
Neswati, N., Novizar, N., Arif, S., & Yusniwati, Y. (2019). SYNTHESIS, CHARACTERIZATION AND MODIFICATION OF FLEXIBLE POLYURETHANE FOAMS USING RAW MATERIALS FROM BIOPOLYOLS BASED ON PALM OIL AND OTHER VEGETABLE OILS: A REVIEW. Jurnal Agroindustri, 9(2), 66–82. https://doi.org/10.31186/j.agroindustri.9.2.66-82

References

  1. Abdullah, S. 2012. Pengaruh Waktu Reaksi Terhadap Bilangan Hidroksil Pada Pembentukan Polyol Dari Epoksidasi CPO dan Curcas Oil. KONVERSI 1(1): 1-10
  2. Ain, N.H., M. T. I.T. Noor, M. A. M. Noor, A. Srihanum, K. P.P. Devi, N. S. Mohd, N. Mohdnoor, Y.S. Kian, H. A. Hassan, I. Campara, C. M. Schiffman, K. Pietrzyk, V. Sendijarevic, dan I. Sendijarevic. 2017. Structure–property performance of natural palm olein polyol in the viscoelastic polyurethane foam. Journal of Cellular Plastics 53(1): 65–81
  3. Altuna, F.I., R.A.Ruseckaite, dan P.M. Stefani. 2015. Biobased Thermosetting Epoxy Foams: Mechanical, and Thermal Characterization. ACS. Sust. Chem. Eng. 3:1406-1411
  4. Aouf, C., Lecomte, J., Villeneuve, P., Dubreucq, E., Fulcrand, H., 2012. Chemo-enzymatic functionalization of gallic and vanillic acids: synthesis of bio-based epoxy resins prepolymers. Green Chem. 14:2328–2336. https://doi.org/10.1039/c2gc35558b.
  5. Aouf, C., S. Benyahya, A. Esnouf, S. Caillol, B. Boutevin, dan H. Fulcrand. 2014. Tara tannins as phenolic precursors of thermosetting epoxy resins. Eur. Polym. J. 55:186–198. https://doi.org/10.1016/j.eurpolymj.2014.03.034.
  6. Arniza, M.Z., • S. S. Hoong , Z. Idris, S.K. Yeong, H.A. Hassan, A. K. Din, dan Y. M. Choo. 2015. Synthesis of Transesterified Palm Olein?Based Polyol and Rigid Polyurethanes from this Polyol. J Am Oil Chem Soc 92:243–255. DOI 10.1007/s11746-015-2592-9
  7. Ashida, K.. 2007. Polyurethane and Related Foams. Boca Raton: CRC Press Taylor & Francis Group; p. 50-51
  8. Badri, K. H. & M. S. Ngah. 2015. A Mini Scale Batch Reactor for the Production of Palm?Based Polyol. Sains Malaysiana 44(6):861–867
  9. Benyahya, S., C.Aouf, S. Caillol, B. Boutevin,, J.P. Pascault, dan H. Fulcrand. 2014. Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind. Crop Prod. 53:296–307. https://doi.org/10.1016/j.indcrop.2013.12.045.
  10. Bernardini, J., P. Cinelli, I. Anguillesi, M.B. Coltelli, dan A. Lazzeri. 2015. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. European Polymer Journal 64:147–156
  11. Bryskiewicz, A., M. Zieleniewska, K. Przyjemska, P. Chojnacki, J. Ryszkowska. 2016. Modi?cation of ?exible polyurethane foams by the addition of natural origin ?llers. Polymer Degradation and Stability 132:32-40
  12. Campanella A, dan M. A. Baltan´as. 2005. Degradation of the oxirane ring of epoxidized vegetable oils with hydrogen peroxide using anion exchange resin. Catalysis Today; 12: 208–214
  13. Campanella, A., L. M. Bonnaillie, R. P. Wool. 2009. Polyurethane Foams from Soy oil-Based Polyols. Journal of Applied Polymer Science. 112:2567–2578
  14. Carriço, C.S., T. Fraga, dan V. M. D. Pasa. 2016. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. European Polymer Journal 85:53–61
  15. Chian, K.S., dan L. H. Gan. 1998. Development of a Rigid Polyurethane Foam from Palm Oil. Journal of Applied Polymer Science 68:509-515
  16. Choe, H., G. Sung, dan J. H. Kim. 2018. Chemical treatment of wood ?bers to enhance the sound absorption coef?cient of ?exible polyurethane composite foams. Composites Science and Technology 156:19-27
  17. Cornille, A., C. Guillet, S. Benyahya, C. Negrell, B. Boutevin, dan S. Caillol. 2016. Room temperature ?exible isocyanate-free polyurethane foams. European Polymer Journal 84: 873- 888
  18. Dian, N. L. H. M., L. Y. Ying, N. M. A. N. Ibrahim, N. A. M. Hassim, S. M. Huey, T. C. Ping, and L. O. Ming . 2019. Low-Temperature Directed Interesterification Increases Triunsaturated And Trisaturated Triacylglycerols Of Palm Oil And Affects Its Thermal, Polymorphic And Microstructural Properties. Journal Of Oil Palm Research 31 (1):95-109
  19. Direktorat Jenderal Perkebunan. 2017. Statistik Perkebunan Indonesia 2015-2017. Direktorat Jenderal Perkebunan, Kementerian Pertanian. http://ditjenbun.pertanian.go.id, 81 halaman
  20. Dounis, D.V., and G.L. Wilkes. 1997. Structure–property relationships of ?exible polyurethane foams. Polymer 11:2819–2828, http://dx.doi.org/10.1016/S00323861(97)85620-0.
  21. Feairheller S. H, R. G. Bistline Jr., A. Bilyk, R. L. Dudley, M. F. Kozempel, dan M. J. Haas. 1994. “A novel technique for the preparation of secondary fatty amides,” J. Am. Oil Chem. Soc. 71 (8):863–866
  22. Fernández, S.G., L.Ugarte, C. P. Rodriguez, M. Zubitur, M. Á, Corcuera, dan A. Eceiza. 2016. Flexible polyurethane foam nanocomposites with modi?ed layered double hydroxides. Applied Clay Science 123:109–120
  23. Fernández, S.G., L. Ugarte, T. C. Correas, C. P. Rodríguez, M. A. Corcuera, dan A. Eceiza. 2017. Properties of ?exible polyurethane foams containing isocyanate functionalized kraft lignin. Indust. Crops and Products 100:51–64
  24. Firdaus, F.E. . 2014. Synthesis and Characterization of Soy-Based Polyurethane Foam with Utilization of Ethylene Glycol in Polyol. Makara J. Technol. 18(1):11-16. doi: 10.7454/mst.v18i1.2937
  25. Gan, H.L., C. P. Tan, , Y. B. Che Man, I. NorAini, and S. A. H. Nazimah. 2005. Monitoring the storage stability of RBD palm olein using the electronic nose. Food Chemistry 89:271-282
  26. Greenspan, F. P. dan R. J. Gall. 2003. Epoxy fatty acid ester plasticizer. Industrial and Engineering Chemistry 45:2722-2726
  27. Hao, Y.J. S. M. Huey, Y. C. Beng, S. Kanagaratnam, L. C. Abdullah, dan T. C. S. Yaw. 2019. The Effects of Polyglycerol Esters on Palm Olein Fractionation. Journal of Oil Palm Research 31(2):294-303
  28. He, Z.A., W. Blank, dan M.Picci. 2002. A selective catalyst for two-component waterborne polyurethane coatings. J. Coat. Technol. 74:31-36
  29. Heintz, A.M., D.J. Duffy, C.M. Nelson, Y. Hua, S.L.Hsu. 2005. A spectroscopic analysis of the phase evolution in polyurethane foams. Macromolecules 38:9192–9199. http://dx.doi.org/10.1021/ma051599w.
  30. Ifa, L., Sumarno , Susianto,, dan Mahfud. 2012. Model Kinetika Reaksi Pembentukan Polyol berbasis Minyak Sawit. Reaktor 14 (1):1-8
  31. Karina, R.M. 2005. Stabilisasi Oksidasi Castor Oil sebagai Minyak Lumas Dasar. Tesis S2 Program Magster Departemen Depok: Teknik Kimia, UI
  32. Kattiyaboot, T. dan C. Thongpin. 2016. Effect of natural oil based polyols on the properties of flexible polyurethane foams blown by distilled water. Energy Procedia 89:177 – 185
  33. Khundamri, N., C. Aouf, H. Fulcrand, E. Dubreucq dan V. Tanrattanakul. 2019. Bio-based ?exible epoxy foam synthesized from epoxidized soybean oil and epoxidized mangosteen tannin. Industrial Crops & Products 128:556–565
  34. Kirk-Othmer. 2004. Encyclopedia of Chemical Technology, Vol. 9, 5th Edition. Wileyonline- library.com /ref/kirk, p 251
  35. Kraitape, N dan C. Thongpin. 2016. Influence of recycled polyurethane polyol on the properties of flexible polyurethane foams. Energy Procedia 89:186 – 197
  36. Landrock, A.H. 1995. Handbook of plastic foams: Types, Properties, Manufacture and applications.United States of America: Noycs Publication; p. 43-45.
  37. Li, W., A.J. Ryan, dan I.K. Meier. 2002. Effect of chain extenders on the morphology development in ?exible polyurethane foam. Macromolecules 35:6306–6312. http://dx.doi.org/10.1021/ma020231l.
  38. Lim, H., S.H. Kim, dan B. K. Kim. 2008. Effects of the hydroxyl value of polyol in rigid polyurethane foams. POLYMERS FOR ADVANCED TECHNOLOGIES; Polym. Adv. Technol. 19: 1729–1734
  39. Lorenzetti, A., M. Modesti S. Besco D. Hrelja dan S. Donadi. 2011. Influence of phosphorus valency on thermal behavior of flame retarded polyurethane foams. Polym Degrad Stabil 96(8):1455–1461.
  40. Lumcharoen, D., and Saravari, O., 2014. Preparation And Characterization of ?exible Polyurethane Foams from Palm Oil-Based Polyol. Adv. Mater 911:352-356. http://dx. doi.org/10.4028 /www.scienti?c.net/AMR.911.352.
  41. Maisaroh dan I.B. Susetyo. 2017. Optimasi pada Epoksidasi Asam Oleat sebagai Bahan Baku dalam Sintesis Asam 9,10-Dihidroksi Stearat (DHSA). Warta IHP/Journal of Agro-based Industry 34 (2):96-103
  42. Mazzon,E., A. H. Ulloa, and J.P. Habas. 2015. Lightweight Rigid Foams from Highly Reactive Epoxy Resins derived from Vegetable Oil for Automotive Applications. European Polymer Journal 68:546–557
  43. Metin, S and R.W. Hartel. 2005. Crystallization of fats and oils. Bailey’s Industrial Oil and Fat Products. Sixth edition. p. 6.
  44. Miao, S.,S. Zhang, Z. Su, and P. Wang. 2013. Synthesis of bio-based polyurethanes from epoxidized soybean oil and isopropanolamine. J. Appl. Polym. Sci. 127:1929–1936
  45. Mohammadi, A., D.Y. Wang, A.S.Hosseini, J. D. L. Vega. 2019. E?ect of intercalation of layered double hydroxides with sulfonate containing calix[4]arenes on the ?ame retardancy of castor oil-based ?exible polyurethane foams. Polymer Testing 79:106055. https://doi.org/10.1016/j.polymertesting.2019.106055
  46. Mora, M., M.I. López, M.A. Carmona, C. Jiménez-Sanchidrián, dan J.R. Ruiz. 2010. Study of the thermal decomposition of a sepiolite by mid- and near-infrared spectroscopies. Polyhedron 29:3046–3051
  47. Narine, S.S., J. Yue, and X. Kong. 2007 “Production of polyols from canola oil and their chemical identification and physical properties,” JAOCS, J. Am. Oil Chem. Soc.84:173–179
  48. Nofiyanti, E, dan N. Mariam. 2018. Sintesis dan Karakterisasi Busa Poliuretan dari Minyak Goreng Bekas dan Toluen Diisosianat dengan Penambahan PEG-400. CHEESA 1(1):21-25
  49. Ogunniyi, D.S., dan W. R. O. Fakayejo. 1996. Preparation and Properties of Polyurethane Foams from Toluene Diisocyanate and Mixtures of Castor Oil and Polyol. Iranian Polymer Journal 5:56-59
  50. Ogunleye, O.O., F.A. Oyawale, dan E. Suru. 2008. Effects of Castor Oil on the Physical Properties of Polyether Based Flexible Polyurethane Foam. Advances in Natural and Applied Sciences 2:10-15
  51. Pan, Y, L.Liu, W. Cai, Y. Hu, S.Jiang dan H. Zhao. 2018. Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Applied Clay Science 168:230–236
  52. Pawlik, H. dan A. Prociak. 2012. Influence of Palm Oil-Based Polyol on the Properties of Flexible Polyurethane Foams. J Polym Environ 20: 438–445
  53. Prociak, A. , P. Rojek, dan H. Pawlik. 2012. Flexible polyurethane foams modified with natural oil based polyols. Journal of Cellular Plastics 00:1-12
  54. Prociak, A., E. Malewska, M. Kuranska, S. Bak, dan P. Budny. 2018. Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of di?erent oxirane ring opener. Industrial Crops & Products 115:69–77
  55. Rao, W.H., Z.M. Zhu, S.X. Wang, T. Wang, Y.Tan, W. Liao, H.B. Zhao, dan Y.Z. Wang . 2018. A reactive phosphorus-containing polyol incorporated into ?exible polyurethane foam: Self-extinguishing behavior and mechanism. Polymer Degradation and Stability 153:192-200
  56. Rao, W.H., W. Liao, H. Wang, H. B. Zhao, dan Y. Z. Wang. 2018. Flame-retardant and smoke-suppressant ?exible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. Journal of Hazardous Materials 360:651–660
  57. Rashmi, B. J., D. Rusu, K. Prashantha, M. F. Lacrampe, dan P. Krawczak. 2013. Development of Water-Blown Bio-Based Thermoplastic Polyurethane Foams Using Bio-Derived Chain Extender. Journal of Applied Polymer Science. 584:361-365
  58. Rohaeti, E., N. M. Surdia, C. L. Radiman & E. Ratnaningsih. 2003. Pengaruh Jenis Poliol terhadap Pembentukan Poliuretan dari Monomer PEG400 dan MDI. PROC. ITB Sains & Tek. 35 A ( 2):97-109.
  59. Roumeas, L., C. Aouf, E. Dubreucq, dan H. Fulcrand. 2013. Depolymerisation of Condensed Tannins in Ethanol As A Gateway to Biosourced Phenolic Synthons. Green Chem. 15:3268–3275. https://doi.org/10.1039/C3GC41281D.
  60. Sambanthamurthi, R., K. Sundram and Y. A. Tan. 2000. Chemistry and Biochemistry of Palm Oil. Progress In Lipid Research 39:507-55
  61. Scarfato, P., L. D. Maio, dan L.Incarnato. 2017. Structure and Physical-Mechanical Properties Related to Comfort of ?exible Polyurethane Foams for Mattress and Effects of Arti?cial Weathering. Composites Part B 109:45-52
  62. Shell Chemicals, Data Sheet. 2016. Caradol SA 34-05 Urethane Chemicals For Flexible Applications.https://www.shell.com/business-customers/chemicals/our-products/polyols /_jcr_content/par/tabbedcontent/tab_132960334/textimage_221957534.stream/1519790816984/39b5b47e22e0cd548c2f7adc643d52401d5ac63b/caradol-sa34-05.pdf ; diakses 17 Agustus 2019.
  63. Sienkiewicz, N., S. Czlonka, A. Kairyte dan S. Vaitkus. 2019. Curcumin as a natural compound in the synthesis of rigid polyurethane foams with enhanced mechanical, antibacterial and anti-ageing properties. Polymer Testing 79:10
  64. Sinaga. 2007. Pengaruh katalis H2SO4 pada reaksi epoksidasi metil ester PFA( Palm FattyAcid Distillate). Jurnal Teknologi Proses 6(1):70-74
  65. Soloi, S., R. A.. Majid, J.Jamaluddin, dan A. R. Rahmat. 2018. Novel Palm Oil Based Polyols with Amide functionality. International Journal of Sciences: Basic and Applied Research (IJSBAR) 37 (1):74-86
  66. Sudrajat, R, R.I. Yulita dan D. Setiawan. 2010. Pembuatan Poliol dari Minyak Jarak Pagar sebagai Bahan Baku Poliuretan. Jurnal Penelitian Hasil Hutan 28 (3):231-240
  67. Takighuci, O., D. Ishikawa, M. Sugimoto, T. Tanighuci, dan K. Koyama. 2008. Effect of rheological behavior of epoxy during precuring on foaming. J.Appl. Polym. Sci. 110:657-662
  68. Thanapon Kattiyaboot and Chanchai Thongpin. 2016. Effect of natural oil based polyols on the properties of flexible polyurethane foams blown by distilled water Energy Procedia 89 :177 – 185
  69. Triwulandari, E., H. Prihastuti,A. Haryono dan E. Susilo. 2007. Synthesis And Structure Properties Of Rigid Polyurethane Foam From Palm Oil Based Polyol. Indonesian Journal of Materials Science 43(1):31-36
  70. Tu, Y.C., G.J. Suppes, dan F.H. Hsieh,. 2008. Water-blown rigid and ?exible polyurethane foams containing epoxidized soybean oil triglycerides. J. Appl. Polym. Sci. 109:537–544. http://dx.doi.org/10.1002/app.28153.
  71. Ugarte, L., A. Saralegi, R. Fernández, L. Martín, M.A. Corcuer, dan A. Eceiza. 2014. Flexible polyurethane foams based on 100% renewably sourced polyols. Industrial Crops and Products 62:545–551
  72. Wang, X., P. Zhang, Z. Huang, W. Xing, L.Song, dan Y. Hu. 2019. E?ect of aluminum diethyl phosphinate on the thermal stability and ?ame retardancy of ?exible polyurethane foams. Fire Safety Journal 106:72–79