Main Article Content

Abstract

Pompa proton, yang dapat diaktifkan oleh senyawa gula, diketahui terlibat dalam adaptasi pH rendah di berbagai bakteri. Kami telah mengkonfirmasi sebelumnya bahwa E. coli juga dikenal menggunakan pompa untuk adaptasinya pada pH rendah. Namun demikian, masih harus dikonfirmasi apakah pertumbuhan E. coli pada pH basa juga melibatkan mekanisme yang sama, dimana pompa terlibat. Penelitian ini bertujuan untuk menganalisis pertumbuhan E. coli dalam media Luria-Bertani (LB) pada pH basa dan berbagai konsentrasi glukosa sebagai aktivator untuk pompa proton. Metode yang digunakan dalam penelitian ini adalah rancangan acak lengkap pola faktorial, dimana bakteri ditanam dalam kaldu Luria-Bertani (LB) dengan kondisi yang berbeda. Kurva pertumbuhan diukur menggunakan absorbansi UV-vis pada 600 nm dan dianalisis secara deskriptif. Hasil penelitian menunjukkan bahwa pH pada media sangat mempengaruhi tingkat pertumbuhan bakteri E. coli. Secara umum, E. coli yang ditanam di media dengan pH 12 membutuhkan fase lag yang lebih lama dibandingkan dengan E. coli yang ditanam di media dengan pH 7. Penambahan glukosa pada konsentrasi 5% mampu meningkatkan laju pertumbuhan E. coli di kedua media dengan pH 7 dan 12. Kesimpulan dari penelitian ini adalah stres lingkungan karena peningkatan pH media dapat memperlambat laju pertumbuhan bakteri E. coli, dimana penambahan 5% glukosa dapat membantu meningkatkan tingkat pertumbuhan E. coli. Secara keseluruhan, glukosa ditemukan tidak memiliki efek serius pada pertumbuhan E. coli pada pH basa yang menunjukkan bahwa keterlibatan pompa proton untuk adaptasi pada pH basa adalah minimum.

Article Details

Author Biography

M. Yusuf, Institut Pertanian Bogor

Departemen Ilmu Produksi dan Teknologi Peternakan
How to Cite
Yusuf, M., Kurniawan, H., Pahlevi, A. B. R., Anton, A., Budiman, C., & Arief, I. I. (2020). Peranan Pompa Proton pada Pertumbuhan Escherichia coli di Lingkungan pH Alkali. Jurnal Sain Peternakan Indonesia, 15(1), 84–90. https://doi.org/10.31186/jspi.id.15.1.84-90

References

  1. Bleotu, C., Chifiriuc, M.C., Mircioag?, D., S?ndulescu, O., Aldea, I.M., Banu, O., Ion, D., Diaconu, C.C., F. Marinescu, and V. Laz?r. 2017. The influence of nutrient culture media on Escherichia coli adhesion and biofilm formation ability. Romanian Biotechnological Letters. 22(2): 12483-12491.
  2. Booth, I. R., P. Cash, and C. O. Byrne. 2002. Sensing and adapting to acid stress. Anton von Leeuwenhoek. 81: 33-42.
  3. Costanzo, A. and S. E. Ades. 2006. Growth phase-dependent regulationof the extracytoplasmic stress factor, ?E, guanosine 3’,5’-bispyrophosphate (ppGpp). J. Bacteriol. 188: 4627-4634.
  4. Desnues, B., C. Cuny, G. Gre´gori, S. Dukan, H. Aguilaniu, and T. Nystro¨m. 2003. Differential oxidative damage and expression of stress defense regulons in culturable and nonculturable Escherichia coli cells. EMBO Rep. 4: 400-404.
  5. Foster, J.W. and M. P. Spector. 1995. How Salmonella survives against the odds. Annu Rev Microbiol. 49: 145-174.
  6. Givskov, M., L. Eberl, S. Moller, L. K. Poulsen, and S. Molin. 1994. Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J. Bacteriol. 176: 7-14.
  7. Ishihama, A. 1999. Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes Cells. 4: 135-143.
  8. Kim, C., K. Wilkins, M. Bowers, C. Wynn, and E. Ndegwa. 2018. Influence of pH and temperature on growth characteristics of leading foodborne pathogens in a laboratory medium and select food beverages. Austin Food Sci. 3(1): 1031.
  9. Maurer, L. M., E. Yohannes, S. S. Bondurant, M. Radmacher, and J. L. Slonczewski. 2005. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 187(1): 304-319.
  10. Murata, M., R. R. Noor, H. Nagamitsu, S. Tanaka, and M. Yamada. 2012. Novel pathway directed by rE to cause cell lysis in Escherichia coli. Genes to Cells. 17: 234-247.
  11. Noor, R. R., Z. Islam, S. K. Munshi, and F. Rahman. 2013. Influence of temperature on Escherichia coli growth in different culture media. J Pure Appl Microbio. 7(2): 899-904.
  12. Ohtsuka, K., D. Kawashima, and M. Asai. 2007. Dual functions of heat shock proteins: molecular chaperones inside the cell and danger signals outside of cells. Thermal Med. 23:11-22.
  13. Rolfe, M. D., C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and C. J. D. Hintona. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of Bacteriology. 194(3): 686-701.
  14. Sekse, C., J. Bohlin, E. Skjerve, and G. E. Vegarud. 2012. Growth comparison of several Escherichia coli strains exposed to various concentrations of lactoferrin using linear spline regression. Microb. Inform. Exp. 2(5): 1-12.
  15. Wihansah, R. R. S., M. Yusuf, M. Arifin, A. Y. Oktaviana, Rifkhan, J. K. Negara, and A. K. Sio. 2018. Pengaruh pemberian glukosa yang berbeda terhadap adaptasi Escherichia coli pada cekaman lingkungan asam. JSPI. 13(1): 29-35.
  16. Yohannes, E., D. M. Barnhart, and J. L. Slonczewski. 2004. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. Journal of Bacteriology. 186(1): 192-199.

Most read articles by the same author(s)