Main Article Content

Abstract

This study aimed to determine the relationship between hatchability traits, moisture loss and mortality in commercial Lohmann Brown Lite breeders in South Africa. A total of 5400 hatchable eggs were incubated. Descriptive analysis and the Pearson correlation coefficient were computed using MiniTab17. Fertility, embryo livability and mortality, total moisture loss, and hatchability were 95.06%, 86.56%, 6.37%, 13.27%, and 93.63%, respectively. There is a positive correlation between egg fertility and embryo livability (p<0.001; r=0.86) and between egg fertility and hatch of all set (r=0.82). There is a positive correlation between embryo livability and hatch of all sets (p < 0.001; r = 0.81). A negative correlation exists between moisture loss during days 0-10 and 11-18 of incubation (p < 0.001; r = -0.64). A positive correlation between total moisture loss and that during days 0-10 (p<0.01; r=0.44) and 11-18 (p<0.05; r=0.41) exists. A negative correlation was observed between hatch of fertile eggs and moisture loss (p < 0.05; r = 0.32). First-grade yield shows a positive correlation with total pullet yield (p < 0.001; r = 0.95). First-grade pullet yield has a negative correlation with male yield (p < 0.001; r = -0.95). Second-grade pullet yield has a positive correlation with overall pullet yield (p<0.05; r=0.36). Second-grade pullet yield has a negative correlation with male yield (p<0.05; r=-0.36. These results indicate that hatchability, embryonic mortality, and moisture loss are strongly influenced by fertility and incubation conditions. Optimizing these factors through proper management can improve chick quality, enhance hatchery efficiency, and increase productivity and profitability, contributing to sustainable poultry production and national food security.

Keywords

Hatchability Embryo livability Fertility moisture loss commercial production

Article Details

How to Cite
Mpofu, T. J., Masia, K. S., & Idowu, A. P. (2025). Correlation between hatchability traits, moisture loss, and embryonic mortality in commercial Lohmann Brown Lite breeder birds in South Africa. Jurnal Sain Peternakan Indonesia, 20(3), 142–150. https://doi.org/10.31186/jspi.id.20.3.142-150

References

  1. Adame, M.M and N. Ameha. 2023. Review on egg handling and management of incubation and hatchery environment. Asian Journal of Biological Sciences, 16(4): 474-484. DOI: https://doi.org/10.3923/ajbs.2023.474.484
  2. Adedeji, T.A., S.R. Amao, A.D. Popoola and R.I. Ogundipe. 2015. Fertility, hatchability and eggs quality traits of Nigerian locally adapted chickens in the derived savanna environment of Nigeria. Journal of Biology, Agriculture and Healthcare, 5(17), 36-42. http://www.iiste.org/Journals/index.php/JBAH/article/view/25629/26497
  3. Adu-Aboagye, G., J.K. Nyameasem, K.M.J. Ahiagbe, K.O. Ansah, G.A. Zagbede and K.K. Agbe. 2020. Reproductive traits of the indigenous Guinea fowl under tropical humid conditions; the effect of egg size. Livestock Research for Rural Development, 32: 55. DOI: http://www.lrrd.org/lrrd32/4/gadua32055
  4. Amjadian, T and M.H. Shahir. 2020. Effects of repeated thermal manipulation of broiler embryos on hatchability, chick quality, and post-hatch performance. International Journal of Biometeorology, 64(12): 2177-2183. DOI: https://doi.org/10.1007/s00484-020-02012-w
  5. Avsar, K.O., A. Ucar, S. Özlu and O. Elibol. 2022. Effect of high eggshell temperature during the early period of incubation on hatchability, hatch time, residual yolk, and first-week broiler performance. Journal of Applied Poultry Research, 31: 100197. DOI: https://doi.org/10.1016/j.japr.2021.100197
  6. Bassareh, M. and V. Rezaeipour. 2021. Effects of egg size and different levels of humidity during incubation period on the embryonic development, hatching percentage and chicks yield of broiler breeder. Journal of Veterinary Science and Animal Husbandry 8(1): 1074.
  7. Biesek, J., S. Wlaźlak and M. Adamski. 2023. The biological value of hatching eggs of broiler chicken in the early-mid incubation period based on physicochemical and morphologic features. Poultry Science, 102(6), 102689. DOI: https://doi.org/10.1016/j.psj.2023.102689
  8. Bilalissi, A., H.T. Meteyake, O.E. Oke, H. Lin, O. Onagbesan and K. Tona. 2022. Effect of non-ventilation during the first 10 d of incubation on physiology, hatching events and post-hatch performances of two commercial layers strains. European Poultry Science, 86: 1-21. DOI: https://doi.org/10.1399/eps.2022.360
  9. Brusch, G. A., 4th and D.F. DeNardo. 2019. Egg desiccation leads to dehydration and enhanced innate immunity in python embryos. Developmental and Comparative Immunology, 90: 147–151. DOI: https://doi.org/10.1016/j.dci.2018.09.013
  10. Fathi, M., O. Abou-Emera, I. Al-Homidan, A. Galal and G. Rayan. 2022. Effect of genotype and egg weight on hatchability properties and embryonic mortality pattern of native chicken populations. Poultry Science, 101(11): 102129. DOI: https://doi.org/10.1016/j.psj.2022.102129
  11. Fernandes, J.I.M., K. Prokoski, B.C. Oliveira, C.S. Oro, P.J. Oro and N.L.M. Fernandes. 2016. Evaluation of incubation yield, vaccine response, and performance of broilers submitted to in-ovo vaccination at different embryonic ages. Revista Brasileira de Ciência Avícola, 18(2): 55-63. DOI: https://doi.org/10.1590/1806-9061-2015-0216
  12. Franzo, G., M. Legnardi, G. Faustini, C.M. Tucciarone and M. Cecchinato. 2023. When Everything Becomes Bigger: Big Data for Big Poultry Production. Animals, 13(11): 1804. DOI: https://doi.org/10.3390/ani13111804
  13. Goliomytis, M., T. Tsipouzian and A.L. Hager-Theodorides. 2015. Effects of egg storage on hatchability, chick quality, performance and immunocompetence parameters of broiler chickens. Poultry Science, 94(9): 2257-2265. DOI: https://doi.org/10.3382/ps/pev200
  14. Green, B. 2017. The value of understanding moisture loss in incubation. https://cobbgenetics.com/en_US/articles/the-value-of-understanding-moisture-loss-in-incubation
  15. Gregorich, J.L., M.S. Lilburn and R. Shanmugasundaram. 2022. Effects of Induced Moisture Loss in Chicken Embryos at Embryonic Day 18 and Post-hatch Immune Response During Salmonella enteritidis Lipopolysaccharide Challenge in Broilers. Frontiers in Physiology, 13: 820349. DOI: https://doi.org/10.3389/fphys.2022.820349
  16. Hossain, T., A.S.S. Hossain, A. Roy, M.A.K. Azad and M.A.R. Hawlider. 2016. Effect of Moisture Loss on the Hatchability of Chicken, Duck and Quail Eggs Journal of Environmental Sciences & Natural Resources 9(2): 105-108, 2016
  17. Idowu, P. A., M. Mpayipheli and V. Muchenje. 2018. Practices, housing and diseases within indigenous poultry production in Eastern Cape, South Africa. Journal of agricultural science, 10(11): 111-122. DOI: https://doi.org/10.5539/jas.v10n11p111
  18. Idowu, P. A., O. Zishiri, K.A. Nephawe and B. Mtileni. 2021. Current status and intervention of South Africa chicken production–a review. World's Poultry Science Journal, 77(1): 115-133. DOI: https://doi.org/10.1080/00439339.2020.1866965
  19. Idowu, P.A., O. Zishiri, K.A. Nephawe and B. Mtileni. 2021. Current status and intervention of South Africa chicken production – A review. World’s Poultry Science Journal, 77(1): 115–133. DOI: https://doi.org/10.1080/00439339.2020.1866965
  20. Iqbal, J., S.H. Khan, N. Mukhtar, T. Ahmed and R.A. Pasha. 2016. Effects of egg size (weight) and age on hatching performance and chick quality of broiler breeder. Journal of Applied Animal Research, 44(1): 54-64. DOI: https://doi.org/10.1080/09712119.2014.
  21. Islam, M.S., M.A.R. Howlider, F. Kabir and J. Alam. 2002. Comparative assessment of fertility and hatchability of Barred Plymouth Rock, white leghorn, Rhode Island Red and White rock hen. International Journal of Poultry Science, 1(4): 85-90.
  22. Laban, S.E., M.S. Mohamed, G.Z. Mostafa and S.T. Moubarak. 2024. The effect of hatching eggs sanitization and flock age on microbial load and hatchability parameters. Alexandria Journal of Veterinary Sciences, 82. DOI: https://doi.org/10.5455/ajvs.198099
  23. Lohman Parent Stock Management Guide, 03/19. (n.d.). LOHMANN TIERZUCHT GmbHAm Seedeich 9–11, 27472 Cuxhaven, Germany. www.lohmann-breeders.com
  24. Malago, J.J and M.A. Baitilwake. 2009. Egg traits, fertility, hatchability and chick survivability of Rhode Island Red, local and crossbred chickens. Tanzania Veterinary Journal, 26(1):24 -36.
  25. Malago, J.J and M.A. Baitilwake. 2009. Egg traits, fertility, hatchability and chick survivability of Rhode Island Red, local and crossbred chickens. Tanzania Veterinary Journal, 26(1):24 -36.
  26. Masia, K.S., K.A. Nephawe, B. Mtileni, M.C. Modiba, K.T. Ncube, J.N. Ngcobo, W.J.V. Rensburg and T.J. Mpofu. 2024. Effect of High Incubation Temperature on Embryo Livability, Mortality, Hatchability, and Chick Quality in Commercial Layers. American Journal of Animal and Veterinary Sciences, 19(4): 393-403. DOI: https://doi.org/10.3844/ajavsp.2024.393.403
  27. Masia, K.S., P.A. Idowu, K.A. Nephawe, B. Mtileni, J.N. Ngcobo, M.C. Modiba and T.J. Mpofu. 2025. Effect of incubation temperature on hatchability, chick quality and post-hatch performance – Review. Animal Science and Genetics, 21(3): 59-87. DOI: https://doi.org/10.5604/01.3001.0055.2705
  28. MiniTab 17 Statistical Software. 2017. [Computer Software]. State College, PA: Minitab, Inc. www.minitab.com.
  29. Missoko, M.R., A.J. Ognika, D.C. Ekou, N.M. Ockoyi and P. Akouango. 2024. Evaluation of the Reproduction Parameters of “Lohmann Brown” Strain Chickens Fed with Cajanus cajan Leaf Meal in the Republic of Congo. Open Journal of Animal Sciences, 14: 234-248. DOI: https://doi.org/10.4236/ojas.2024.143017
  30. Mokhaukhau, P.J., M.P. Senyolo and J.J Hlongwane. 2024. Analyzing the Relationship between Egg Production and Population Growth in South Africa from 2013 to 2022. Agricultural Sciences. IntechOpen. DOI: https://doi.org/10.5772/intechopen.1006086
  31. Molenaar, R. S. de Vries, I. van den Anker, R. Meijerhof, B. Kemp and H. van den Brand. 2010. Effect of eggshell temperature and a hole in the air cell on the perinatal development and physiology of layer hatchlings. Poultry Science, 89(8): 1716–1723. DOI: https://doi.org/10.3382/ps.2010-00779
  32. Mortola, J.P and L. Al Awam. 2010. Growth of the chicken embryo: Implications of egg size. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(4): 373-379. DOI: https://doi.org/10.1016/j.cbpa.2010.03.011
  33. Moswane, K and O.I. Oladele. 2024. Determinants of Knowledge, Practice, Belief and Adherence to Taboos on Egg Consumption in Kwazulu-Natal Province of South Africa. African Journal of Food, Agriculture, Nutrition and Development, 24(5). DOI: https://doi.org/10.22004/ag.econ.347791
  34. Mphepya, L. C., van Rensburg, W. J., Mpofu, T. J., Mtileni, B. J., & Nephawe, K. A. (2019). Influence of male-male competition on reproductive performance and mortality of broiler breeders following intra-spiking. Poultry Science, 98(10): 4549–4554. DOI: https://doi.org/10.3382/ps/pez273
  35. Noiva, R.M., A.C. Menezes and M.C. Peleteiro. 2014. Influence of temperature and humidity manipulation on chicken embryonic development. BMC Veterinary Research 10: 234. DOI: https://doi.org/10.1186/s12917-014-0234-3
  36. Nowaczewski, S, M. Babuszkiewicz, T. Szablewski, K. Stuper-Szablewska, R. Cegielska-Radziejewska, L. Tomczyk, S. Kaczmarek, A. Sechman, M.W. Lis, M. Kwaśniewska, P. Racewicz, L. Jarosz, A. Ciszewski, T. Nowak and M. Hejdysz. 2022. Effect of weight and storage time of broiler breeders' eggs on morphology and biochemical features of eggs, embryogenesis, hatchability, and chick quality. Animal, 16(7):100564. DOI: https://doi.org/10.1016/j.animal.2022.100564
  37. Ogbu, O.C and M.A. Oguike. 2019. Hatchability of fertile eggs in poultry industry. Journal of Agriculture and Sustainability, 12 (1): 107-123.
  38. Okasha, H. M., G.M. El-Gendi and K.M. Eid. 2023. The effect of storage periods and SPIDES on embryonic mortality, hatching characteristics, and quality of newly hatched chicks in broiler eggs. Tropical Animal Health and Production, 55(2): 133. DOI: https://doi.org/10.1007/s11250-023-03547-x
  39. Onagbesan, O., V. Bruggeman, L. De Smit, M. Debonne, A. Witters, K. Tona, ... and E. Decuypere. 2007. Gas exchange during storage and incubation of avian eggs: effects on embryogenesis, hatchability, chick quality and post-hatch growth. World's Poultry Science Journal, 63(4): 557-573. DOI: https://doi.org/10.1017/S0043933907001614
  40. Reijrink, I.A.M., R. Meijerhof, B. Kemp and H. van den Brand. 2010. Influence of egg warming during storage and hypercapnic incubation on egg characteristics, embryonic development, hatchability, and chick quality. Poultry Science, 89(11): 2470-2483. DOI: https://doi.org/10.3382/ps.2010-00798.
  41. Rosenberg, T., A. Marco, T. Kisliouk, A. Haron, D. Shinder, S. Druyan and N. Meiri. 2022. Embryonic heat conditioning in chicks induces transgenerational heat/immunological resilience via methylation on regulatory elements. The FASEB Journal, 36(7): e22406. DOI: https://doi.org/10.1096/fj.202101948R
  42. South African Poultry Association (SAPA). (2020). 2020 Industry Profile. https://www.sapoultry.co.za/wp-content/uploads/2022/03/SAPA-INDUSTRY-PROFILE-2020.pdf
  43. South African Poultry Association (SAPA). (2023). State of the SA poultry industry. https://www.sapoultry.co.za/wp-content/uploads/2025/01/SAPA-INDUSTRY-PROFILE-2023.pdf
  44. Tona, K., K. Voemesse, O. N’nanlé, O.E. Oke, Y.A.E. Kouame, A. Bilalissi, H. Meteyake and O.M. Oso. 2022. Chicken Incubation Conditions: Role in Embryo Development, Physiology and Adaptation to the Post-Hatch Environment. Frontiers in Physiology, 13: 895854. DOI: https://doi.org/10.3389/fphys.2022.895854
  45. Tukur, H.M. 2011. Egg Production in Africa. Improving the Safety and Quality of Eggs and Egg Products. Sawston, Cambridge: Woodhead Publishing. pp. 27-38
  46. Wijnen, H.J., C.W. van der Pol, A. Papanikolaou, A. Lammers, B. Kemp, H. van den Brand and R. Molenaar. 2022. Broiler resilience to colibacillosis is affected by incubation temperature and post-hatch feeding strategy. Poultry Science, 101(10): 102092. DOI: https://doi.org/10.1016/j.psj.2022.102092
  47. Willemsen, H., B. Kamers, F. Dahlke, H. Han, Z. Song, Z.A. Pirsaraei, ... and N. Everaert. 2010. High-and low-temperature manipulation during late incubation: effects on embryonic development, the hatching process, and metabolism in broilers. Poultry Science, 89(12): 2678-2690. DOI: https://doi.org/10.3382/ps.2010-00853
  48. Wolc A, and V.E. Olori. 2009. Genetics of hatchability-egg quality from the perspective of a chick. In the 6th European Poultry Genetics Symposium, World Poultry Science Association, Bedlewo, Poland.
  49. Yalcin, S., S. Özkan and T. Shah. 2022. Incubation Temperature and Lighting: Effect on Embryonic Development, Post-Hatch Growth and Adaptive Response. Frontiers in Physiology, 13: 899977. DOI: https://doi.org/10.3389/fphys.2022.899977
  50. Yamak, U.S., M.A. Boz, A. Ucar, M. Sarica and H. Onder, H. 2016. The effect of eggshell thickness on the hatchability of guinea fowl and pheasants. Brazilian Journal of Poultry Science, 18: 49-53. DOI: https://doi.org/10.1590/1806-9061-2015-0214