Main Article Content

Abstract

Probiotics play an essential role in regulating gut microbiota and increasing feed digestibility in poultry. This study aimed to screen and characterize cellulase-producing bacteria as poultry probiotic candidates. Among the five isolates tested, isolates I5 and BP had cellulase activity, as indicated by clear zones surrounding the colonies on carboxymethyl cellulose (CMC) agar plates. Isolate I5 was more tolerant to low pH and 0.3% bile salts than isolate BP, indicating probiotic potential. Isolate I5 was selected for cultivating in tempeh wastewater-molasses medium (TM) and LB medium at 37 °C with shaking at 120 rpm. The results demonstrated that bacterial growth in TM medium was significantly lower  (p < 0.001) than in LB medium. Importantly, bacterial growth in TM medium reached an optical density (OD₆₀₀) of 0.415 after 6 hours of incubation, indicating its adaptability to tempeh wastewater-molasses medium. These findings suggest that the TM medium promotes bacterial growth and proliferation, supports probiotic and enzyme production for use in poultry feed supplementation, and reduces cultivation costs. Therefore, the use of agro-industrial waste provides a cost-effective alternative for cultivating cellulase-producing probiotics, thereby contributing to value-added waste management, sustainable poultry production, and circular bio-economy practices.

Keywords

cellulase-producing bacteria probiotic poultry tempeh wastewater-molasses medium sustainable poultry production

Article Details

How to Cite
Anwar, K., Sukarne, Unsunnidhal, L., Fitriyan Fadjar Suryadi, M. A., Junia Ayu Ninggrum, ⁠Vidia, Aryadin Putra, R., Al Gifari, Z., Septian, I. G. N., Aminurrahman, & Ali, M. (2025). Screening, Characterization and Cultivation of Cellulase-Producing Bacteria as Probiotic Candidates for Poultry. Jurnal Sain Peternakan Indonesia, 20(4), 179–190. https://doi.org/10.31186/jspi.id.20.4.179-190

References

  1. Ababor, S., Tamiru, M., Alkhtib, A., Wamatu, J., Kuyu, C. G., Teka, T. A., Terefe, L. A., & Burton, E. (2023). The use of biologically converted agricultural byproducts in chicken nutrition. Sustainability, 15(19), 14562. https://doi.org/10.3390/su151914562
  2. Ali, M., Anwar, K., Suryadi, M. A. F. F., Zubair, M., Alim, S., Setyono, B. D. H., Fajri, N. A., & Amin, M. (2020). Produksi Sinbiotik untuk Mendukung Penggunaan Bahan Pakan Lokal dalam Budidaya Unggas dan Udang. Abdi Insani, 7(1), 93–99. https://doi.org/10.29303/abdiinsani.v7i1.304
  3. Ali, M., Zubair, M., Rosyidi, A., & Amin, M. (2020). Screening of ammonia-degrading bacteria to reduce ammonia content in the manure of laying hens. IOP Conference Series: Earth and Environmental Science, 441(1), 012138. https://doi.org/10.1088/1755-1315/441/1/012138
  4. Anwar, K., Putra, R. A., Karni, I., Kurniawan, A., Amalyadi, R., Unsunnidhal, L., Kisworo, D., & Ali, M. (2025). Screening and characterization of lactic acid bacteria from the gastrointestinal tract of a native chicken (Gallus gallus f. domesticus) as probiotics. Biodiversitas Journal of Biological Diversity, 26(6). https://doi.org/10.13057/biodiv/d260610
  5. Anwar, K., Sukarne, Unsunnidhal, L., Suryadi, M. A. F. F., Gifari, Z. A., Alimuddin, Amin, M., Sriasih, M., & Ali, M. (2025). Cloning and expression of Ruminococcus flavefaciens cellulase-encoding gene in E. coli as feed additive for poultry. In: Novianti, I., Suyadi, S., Boyd, D., Bagoudou, A. F., ShikhMaidin, M. & Prafitri, R. (Eds.), Proceedings of the 5th International Conference on Environmentally Sustainable Animal Industry (ICESAI 2024). Atlantis Press International BV, 45. https://doi.org/10.2991/978-94-6463-670-3
  6. Arbianti, R., Utami, T. S., Leondo, V., Elisabeth, Putri, S. A., & Hermansyah, H. (2018). Effect of biofilm and selective mixed culture on microbial fuel cell for the treatment of tempeh industrial wastewater. IOP Conference Series: Materials Science and Engineering, 316, 012073. https://doi.org/10.1088/1757-899X/316/1/012073
  7. Ariffin, H., Hassan, M. A., Shah, U. K. M., Abdullah, N., Ghazali, F. M., & Shirai, Y. (2008). Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. Journal of Bioscience and Bioengineering, 106(3), 231–236. https://doi.org/10.1263/jbb.106.231
  8. Aulitto, M., Fusco, S., Bartolucci, S., Franzén, C. J., & Contursi, P. (2017). Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnology for Biofuels, 10(1), 210. https://doi.org/10.1186/s13068-017-0896-8
  9. Bairagi, A., Ghosh, K. S., Sen, S. K., & Ray, A. K. (2002). Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International, 10(2), 109–121. https://doi.org/10.1023/A:1021355406412
  10. Bergey, D. H., & Holt, J. G. (1994). Bergey’s Manual of Determinative Bacteriology (9th ed.). Williams & Wilkins.
  11. Choct, M. (2015). Fibre - Chemistry and Functions in Poultry Nutrition. Proc. LII Simposio Científico de Avicultura, Málaga, 113–119.
  12. Clarke, M. A. (2003). Syrups. In Encyclopedia of Food Sciences and Nutrition (pp. 5711–5717). Elsevier. https://doi.org/10.1016/B0-12-227055-X/01175-5
  13. Dabiré, Y., Somda, N. S., Somda, M. K., Compaoré, C. B., Mogmenga, I., Ezeogu, L. I., Traoré, A. S., Ugwuanyi, J. O., & Dicko, M. H. (2022). Assessment of probiotic and technological properties of Bacillus spp. isolated from Burkinabe Soumbala. BMC Microbiology, 22(1), 228. https://doi.org/10.1186/s12866-022-02642-7
  14. Gharbi, Y., Fhoula, I., Ruas-Madiedo, P., Afef, N., Boudabous, A., Gueimonde, M., & Ouzari, H.-I. (2019). In-vitro characterization of potentially probiotic Lactobacillus strains isolated from human microbiota: interaction with pathogenic bacteria and the enteric cell line HT29. Annals of Microbiology, 69(1), 61–72. https://doi.org/10.1007/s13213-018-1396-1
  15. Gifari, Z. Al, Agistna, I., Anwar, K., Rosyidi, A., Ali, M., & Amin, M. (2022). Cultivation of phytase-producing bacteria as probiotic candidate on molasses and tempe-processing waste. IOP Conference Series: Earth and Environmental Science, 1036(1), 012048. https://doi.org/10.1088/1755-1315/1036/1/012048
  16. Golnari, M., Bahrami, N., Milanian, Z., Rabbani Khorasgani, M., Asadollahi, M. A., Shafiei, R., & Fatemi, S. S.-A. (2024). Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Scientific Reports, 14(1), 1457. https://doi.org/10.1038/s41598-024-51823-z
  17. Gupta, P., Samant, K., & Sahu, A. (2012). Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology, 2012, 1–5. https://doi.org/10.1155/2012/578925
  18. Ichsan, M. (2004). Pengaruh Pemberian Bacillus sp. terhadap Kinerja Pertumbuhan, Kadar Lemak dan Kolesterol Daging Ayam Broiler. Buletin Peternakan, 28(3), 96–103.
  19. Jo, K.-I., Lee, Y.-J., Kim, B.-K., Lee, B.-H., Chung, C.-H., Nam, S.-W., Kim, S.-K., & Lee, J.-W. (2008). Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnology and Bioprocess Engineering, 13(2), 182–188. https://doi.org/10.1007/s12257-007-0149-y
  20. Kaleem, N., Iqbal, M., & Jamil, A. (2000). Production of antimicrobial agents by Bacillus subtilis through fermentation of molasses. Pakistan Journal of Biological Sciences, 3(8), 1326–1329. https://doi.org/10.3923/pjbs.2000.1326.1329
  21. Kim, E., Morgan, N. K., Moss, A. F., Solbak, A., Li, L., Ader, P., & Choct, M. (2022). In vitro degradation of non-starch polysaccharide residues in the digesta of broilers offered wheat-soy or maize-soy diets by feed enzymes. Journal of Applied Animal Nutrition, 10(2), 71–81. https://doi.org/10.3920/JAAN2022.0001
  22. Lee, J., Park, I., Choi, Y., & Jaiesoon. (2012). Bacillus strains as feed additives: In vitro evaluation of its potential probiotic properties. Revista Colombiana de Ciencias Pecuarias, 25, 577–585.
  23. Lestari, P., Suprapto, D., & Mahasri, G. (2020). Isolation and identification of bacteria in gastrointestinal of eel (Anguilla bicolor) that has potential as probiotic. IOP Conference Series: Earth and Environmental Science, 441(1), 012148. https://doi.org/10.1088/1755-1315/441/1/012148
  24. Lin, W.-H., Hwang, C.-F., Chen, L.-W., & Tsen, H.-Y. (2006). Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiology, 23(1), 74–81. https://doi.org/10.1016/j.fm.2005.01.013
  25. Mushtaq, Q., Ishtiaq, U., Joly, N., Qazi, J. I., & Martin, P. (2024). Amylase and cellulase production from newly isolated Bacillus subtilis using acid treated potato peel waste. Microorganisms, 12(6), 1106. https://doi.org/10.3390/microorganisms12061106
  26. Nemska, V., Logar, P., Rasheva, T., Sholeva, Z., Georgieva, N., & Danova, S. (2019). Functional characteristics of Lactobacilli from traditional Bulgarian fermented milk products. Turkish Journal of Biology, 148–153. https://doi.org/10.3906/biy-1808-34
  27. Nithya, V., & Halami, P. M. (2013). Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Annals of Microbiology, 63(1), 129–137. https://doi.org/10.1007/s13213-012-0453-4
  28. Nkukwana, T. T., Muchenje, V., Masika, P. J., & Mushonga, B. (2015). Intestinal morphology, digestive organ size and digesta pH of broiler chickens fed diets supplemented with or without Moringa oleifera leaf meal. South African Journal of Animal Science, 45(4), 362. https://doi.org/10.4314/sajas.v45i4.2
  29. Nugraha, Y. A., Nissa, K., Nurbaeti, N., Amrullah, F. M., & Harjanti, D. W. (2017). Pertambahan Bobot Badan dan Feed Conversion Rate Ayam Broiler yang Dipelihara Menggunakan Desinfektan Herbal. Jurnal Ilmu-Ilmu Peternakan, 27(2), 19–24. https://doi.org/10.21776/ub.jiip.2017.027.02.03
  30. Nurbaiti, N., Rosyidi, A., & Ali, M. (2016). Skrening Bakteri Asam Laktat yang Diisolasidari UsusAyam Broiler sebagaiKandidat Probiotik untuk Unggas. Jurnal Ilmu Dan Teknologi Peternakan Indonesia (JITPI), 2(1), 144–149. https://doi.org/10.29303/jitpi.v2i1.25
  31. Pakpahan, M. R. R. B., Ruhiyat, R., & Hendrawan, D. I. (2021). Karakteristik Air Limbah Industri Tempe (Studi Kasus: Industri Tempe Semanan, Jakarta Barat). Jurnal Bhuwana, 164–172. https://doi.org/10.25105/bhuwana.v1i2.12535
  32. Payne, J., Bellmer, D., Jadeja, R., & Muriana, P. (2024). The potential of Bacillus species as probiotics in the food industry: A Review. Foods, 13(15), 2444. https://doi.org/10.3390/foods13152444
  33. Perim, F. dos S., da Silva, W. J., de Souza, D. O., Ulhoa, C. J., Rezende, C. F., dos Santos, L. F., dos Santos, F. R., Silva, F. G., & Minafra, C. S. (2024). Effects of the addition of Trichoderma reesei cellulase to broiler chicken diets for a 21-day period. Animals, 14(10), 1467. https://doi.org/10.3390/ani14101467
  34. Ren, J., Yu, D., Li, N., Liu, S., Xu, H., Li, J., He, F., Zou, L., Cao, Z., & Wen, J. (2023). Biological characterization and whole-genome analysis of Bacillus subtilis MG-1 isolated from mink fecal samples. Microorganisms, 11(12), 2821. https://doi.org/10.3390/microorganisms11122821
  35. Risna, Y. K., Harimurti, S., Wihandoyo, & Widodo, W. (2020). Screening for probiotic of lactic acid bacteria isolated from the digestive tract of a native Aceh duck (Anas platyrhynchos). Biodiversitas Journal of Biological Diversity, 21(7). https://doi.org/10.13057/biodiv/d210717
  36. Sari, D., & Rahmawati, A. (2020). Pengelolaan Limbah Cair Tempe Air Rebusan dan Air Rendaman Kedelai. Jurnal Ilmiah Kesehatan Media Husada, 9(1), 47–54. https://doi.org/10.33475/jikmh.v9i1.210
  37. Sari, D. T. I., Sudjarwo, E., & Prayogi, H. (2014). Pengaruh Penambahan Cacing Tanah (Lumbricusrubellus) Segar dalam Pakan terhadap Berat Telur, Haugh Unit (HU) dan Ketebalan Cangkang Itik Mojosari. Jurnal Ternak Tropika, 15(2), 23–30.
  38. Shyaula, M., Regmi, S., Khadka, D., Poudel, R. C., Dhakal, A., Koirala, D., Sijapati, J., Singh, A., & Maharjan, J. (2023). Characterization of thermostable cellulase from Bacillus licheniformis PANG L isolated from the Himalayan soil. International Journal of Microbiology, 2023, 1–12. https://doi.org/10.1155/2023/3615757
  39. Sonaiya, E. B., & Swan, S. E. J. (2004). Small-Scale Poultry Production: Technical Guide. In FAO Animal Production and Health No. 1. Rome, Italy: FAO.
  40. Sozcu, A. (2019). Growth performance, pH value of gizzard, hepatic enzyme activity, immunologic indicators, intestinal histomorphology, and cecal microflora of broilers fed diets supplemented with processed lignocellulose. Poultry Science, 98(12), 6880–6887. https://doi.org/10.3382/ps/pez449
  41. Sukmawati, S., Hardianti, F., Zakariah, M. I. Bin, Sulfiana, S., & Riskawati, R. (2024). Probiotic potential of bacterial isolates from Klawalu Mangrove: Physiological characterization. Biological Environment and Pollution, 4(1), 8–16. https://doi.org/10.31763/bioenvipo.v4i1.779
  42. Sutaoney, P., Rai, S. N., Sinha, S., Choudhary, R., Gupta, A. K., Singh, S. K., & Banerjee, P. (2024). Current perspective in research and industrial applications of microbial cellulases. International Journal of Biological Macromolecules, 264, 130639. https://doi.org/10.1016/j.ijbiomac.2024.130639
  43. Toutiaee, S., Mojgani, N., Harzandi, N., Moharrami, M., & Mokhberosafa, L. (2022). In vitro probiotic and safety attributes of Bacillus spp. isolated from bee bread, honey samples and digestive tract of honey bees Apis mellifera. Letters in Applied Microbiology, 74(5), 656–665. https://doi.org/10.1111/lam.13650
  44. Valle Vargas, M. F., Villamil Diaz, L. M., Ruiz Pardo, R. Y., & Quintanilla Carvajal, M. X. (2024). Design of an agro-industrial by-products-based media for the production of probiotic bacteria for fish nutrition. Scientific Reports, 14(1), 17955. https://doi.org/10.1038/s41598-024-68783-z
  45. Wang, J., Bao, F., Wei, H., & Zhang, Y. (2024a). Screening of cellulose-degrading bacteria and optimization of cellulase production from Bacillus cereus A49 through response surface methodology. Scientific Reports, 14(1), 7755. https://doi.org/10.1038/s41598-024-58540-7
  46. Wood, P. J. (1980). Specificity in the interaction of direct dyes with polysaccharides. Carbohydrate Research, 85(2), 271–287. https://doi.org/10.1016/S0008-6215(00)84676-5
  47. Yamaki, S. B., Barros, D. S., Garcia, C. M., Socoloski, P., Oliveira, , Osvaldo N., & Atvars, T. D. Z. (2005). Spectroscopic studies of the intermolecular interactions of Congo red and Tinopal CBS with modified cellulose fibers. Langmuir, 21(12), 5414–5420. https://doi.org/10.1021/la046842j