Main Article Content

Abstract

Precision Livestock Farming (PLF) is a modern approach to livestock management that leverages sensors, the Internet of Things (IoT), and artificial intelligence to enhance efficiency, productivity, and animal welfare. In developed countries, PLF is regarded as a revolution in the livestock sector; however, in the context of traditional livestock farming in Indonesia, particularly among small-scale beef cattle farmers, its implementation poses a dilemma between opportunities for transformation and risks of disruption. This systematic review, conducted in accordance with the PRISMA framework, critically examines the implications of PLF for traditional farmers by synthesizing literature from Scopus, Web of Science, ScienceDirect, and Google Scholar (2010-2024). Through thematic analysis of 40 selected studies, we find that PLF offers substantial benefits, including improved feed efficiency, early disease detection, and enhanced animal welfare, but also faces significant barriers, such as high investment costs, limited infrastructure, low digital literacy, and risks of smallholder marginalization. By integrating evidence from both technological and socio-economic perspectives, this review provides a holistic analysis of PLF’s dual role as both a transformative tool and a potential disruptor in developing agricultural contexts. The findings underscore the necessity of context-sensitive adoption strategies, informed by incremental technology introduction, supportive policies, targeted subsidies, cooperative models, and capacity-building initiatives. This study contributes to the literature by offering a policy-relevant framework for aligning PLF with inclusive and sustainable livestock development in Indonesia and similar settings.

Keywords

Precision Livestock Farming beef cattle traditional farmers agricultural technology

Article Details

How to Cite
Firhamsah, I., Gifari, Z. A., Nurjannah, L. L., Pertiwi, E. A., & Wandira, I. A. (2025). Revolution or Disruption? Implications of Precision Livestock Farming (PLF) for Traditional Livestock Systems in Indonesia . Jurnal Sain Peternakan Indonesia, 20(4), 217–228. Retrieved from https://ejournal.unib.ac.id/jspi/article/view/45643

References

  1. Adnyana, I. P. C. P., Hilmiati, N., & Astiti, L. G. S. (2021). The growth of the cattle population in West Nusa Tenggara (NTB) and its development prospects. IOP Conference Series: Earth and Environmental Science, 667(1). https://doi.org/10.1088/1755-1315/667/1/012054
  2. Álvarez García, D., Cruz Cerón, D. Y., & Sánchez Castillo, V. (2024). Analysis of farmers’ imaginary around the transition and adoption of the new livestock reconversion model in the municipality of Cartagena del Chairá. Southern Perspective / Perspectiva Austral, 2, 27. https://doi.org/10.56294/pa202427
  3. Amam, A., Jadmiko, M. W., Harsita, P. A., & Rusdiana, S. (2024). Formulating a Strategy for Development of Smallholder Beef Cattle Farming in Indonesia with the Force Field Analysis (FFA) Method. BIO Web of Conferences, 88, 1–7. https://doi.org/10.1051/bioconf/20248800030
  4. Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., & Pugliese, C. (2022). Review: Precision Livestock Farming technologies in pasture-based livestock systems. Animal, 16(1), 100429. https://doi.org/10.1016/j.animal.2021.100429
  5. Bianchi, M. C., Bava, L., Sandrucci, A., Tangorra, F. M., Tamburini, A., Gislon, G., & Zucali, M. (2022). Diffusion of precision livestock farming technologies in dairy cattle farms. Animal, 16(11), 100650. https://doi.org/10.1016/j.animal.2022.100650
  6. Dimeng, W., Ayu, I. W., & Wijayanti, N. (2024). Karakteristik Rumah Tangga Petani Lahan Kering Di Kecamatan Labangka, Kabupaten Sumbawa. Jurnal Riset Kajian Teknologi Dan Lingkungan, 7(1), 169–180. https://doi.org/10.58406/jrktl.v7i1.1619
  7. Egon, K., & Oloyede, J. O. (2023). Advancements in Sensor Technologies for Precision Livestock Farming.
  8. Hayden, J., Rocker, S., Phillips, H., Heins, B., Smith, A., & Delate, K. (2018). The importance of social support and communities of practice: Farmer perceptions of the challenges and opportunities of integrated crop-livestock systems on organically managed farms in the Northern U.S. Sustainability (Switzerland), 10(12), 1–26. https://doi.org/10.3390/su10124606
  9. Huda, A. N., Yekti, A. P. A., Ndaruc, P. H., Putritamara, J. A., Adli, D. N., & Shamad, Z. (2021). Potential of Small-Scale Business Development and Sociocultural of Beef Cattle Farm at Pamekasan Regency: Case Study at Madura Island. Jurnal Ternak, 12(1), 1–5. https://doi.org/10.30736/jt.v12i1.93
  10. Irawan, F., Dahlanuddin, Halliday, M. J., Hegarty, R. S., & Cowley, F. C. (2022). The role of leucaena in cattle fattening and breeding production systems in eastern Indonesia. Tropical Grasslands-Forrajes Tropicales, 10(3), 222–236. https://doi.org/10.17138/TGFT(10)222-236
  11. Kaur, U., Malacco, V. M. R., Bai, H., Price, T. P., Datta, A., Xin, L., Sen, S., Nawrocki, R. A., Chiu, G., Sundaram, S., Min, B. C., Daniels, K. M., White, R. R., Donkin, S. S., Brito, L. F., & Voyles, R. M. (2023). Invited review: Integration of technologies and systems for precision animal agriculture - A case study on precision dairy farming. Journal of Animal Science, 101(June), 1–23. https://doi.org/10.1093/jas/skad206
  12. Kleen, J. L., & Guatteo, R. (2023). Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals, 13(5), 1–15. https://doi.org/10.3390/ani13050779
  13. Kopler, I., Marchaim, U., Tikász, I. E., Opaliński, S., Kokin, E., Mallinger, K., Neubauer, T., Gunnarsson, S., Soerensen, C., Phillips, C. J. C., & Banhazi, T. (2023). Farmers’ Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors. Animals, 13(18). https://doi.org/10.3390/ani13182868
  14. Krampe, C., Ingenbleek, P. T. M., Niemi, J. K., & Serratosa, J. (2024). Designing precision livestock farming system innovations: A farmer perspective. Journal of Rural Studies, 111(September), 103397. https://doi.org/10.1016/j.jrurstud.2024.103397
  15. Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409
  16. Lovarelli, D., Bovo, M., Giannone, C., Santolini, E., Tassinari, P., & Guarino, M. (2024). Reducing life cycle environmental impacts of milk production through precision livestock farming. Sustainable Production and Consumption, 51(July), 303–314. https://doi.org/10.1016/j.spc.2024.09.021
  17. Lukman, Enny Yuliani, Lalu Ahmad Zaenuri, I Wayan Lanus Sumadiasa, Mardiansyah Mardiansyah, & Ryan Aryadin Putra. (2023). Artificial Insemination in Local Beef Cattle Breeding Using Various Breeds of Males in West Lombok Regency: An Evaluation of Its Success Rate. Jurnal Triton, 14(2), 483–491. https://doi.org/10.47687/jt.v14i2.501
  18. Marchegiani, S., Gislon, G., Marino, R., Caroprese, M., Albenzio, M., Pinchak, W. E., Carstens, G. E., Ledda, L., Trombetta, M. F., Sandrucci, A., Pasquini, M., Deligios, P. A., & Ceccobelli, S. (2025). Smart technologies for sustainable pasture-based ruminant systems: A review. Smart Agricultural Technology, 10(November 2024), 100789. https://doi.org/10.1016/j.atech.2025.100789
  19. Menendez, H. M., Brennan, J. R., Gaillard, C., Ehlert, K., Quintana, J., Neethirajan, S., Remus, A., Jacobs, M., Teixeira, I. A. M. A., Turner, B. L., & Tedeschi, L. O. (2022). ASAS-NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and challenges of confined and extensive precision livestock production. Journal of Animal Science, 100(6), 1–19. https://doi.org/10.1093/jas/skac160
  20. Molieleng, L., Fourie, P., & Nwafor, I. (2021). Adoption of climate smart agriculture by communal livestock farmers in South Africa. Sustainability (Switzerland), 13(18), 1–18. https://doi.org/10.3390/su131810468
  21. Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming—Brief review. Animals, 11(8), 1–18. https://doi.org/10.3390/ani11082345
  22. Morrone, S., Dimauro, C., Gambella, F., & Cappai, M. G. (2022). Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. 1–25.
  23. Neethirajan, S. (2023). The Significance and Ethics of Digital Livestock Farming. AgriEngineering, 5(1), 488–505. https://doi.org/10.3390/agriengineering5010032
  24. Nery, L. M., da Cunha e Silva, D. C., & Sabonaro, D. Z. (2024). Agriculture technology transfer: A multicriteria analysis for decision making. Environment, Development and Sustainability, 26(6), 15515–15533. https://doi.org/10.1007/s10668-023-03261-6
  25. Niloofar, P., Francis, D. P., Lazarova-Molnar, S., Vulpe, A., Vochin, M. C., Suciu, G., Balanescu, M., Anestis, V., & Bartzanas, T. (2021). Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Computers and Electronics in Agriculture, 190. https://doi.org/10.1016/j.compag.2021.106406
  26. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj, 372. https://doi.org/10.1136/bmj.n71
  27. Papakonstantinou, G. I., Voulgarakis, N., Terzidou, G., Fotos, L., Giamouri, E., & Papatsiros, V. G. (2024). Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change. Agriculture (Switzerland), 14(4), 1–17. https://doi.org/10.3390/agriculture14040620
  28. Rowe, E., Dawkins, M. S., & Gebhardt-Henrich, S. G. (2019). A systematic review of precision livestock farming in the poultry sector: Is technology focussed on improving bird welfare? Animals, 9(9), 1–18. https://doi.org/10.3390/ani9090614
  29. Taer, A. N., & Taer, E. C. (2025). Harnessing Precision and Innovation: A Systematic Review of Precision Livestock Farming and IoT Technologies in the Philippines. Ceylon Journal of Science, 54(1), 53–64. https://doi.org/10.4038/cjs.v54i1.8405
  30. Tedeschi, L., & Mendes, E. D. M. (2021). Precision Livestock Farming Tools for Climate- Smart Feedyard Operations. Journal of Animal Science, 101, 167–186.
  31. Tejada Gimenez, D. A., & Cifuentes Ortiz, O. D. (2022). Limitations that livestock producers face during the transition from a conventional livestock model to a sustainable livestock approach. Environmental Research and Ecotoxicity, 1, 10. https://doi.org/10.56294/ere202210
  32. Tuyttens, F. A. M., Molento, C. F. M., & Benaissa, S. (2022). Twelve Threats of Precision Livestock Farming (PLF) for Animal Welfare. Frontiers in Veterinary Science, 9(May), 1–12. https://doi.org/10.3389/fvets.2022.889623
  33. Tzanidakis, C., Tzamaloukas, O., Simitzis, P., & Panagakis, P. (2023). Precision Livestock Farming Applications (PLF) for Grazing Animals. Agriculture (Switzerland), 13(2), 1–23. https://doi.org/10.3390/agriculture13020288
  34. Villano, R. A., Koomson, I., Thei, S., Taqiuddin, M., Prameswari, F., Fachry, A., Fatah, L., Sumantri, I., & Burrow, H. (2025). Women’s empowerment in integrated cattle-farming systems in Indonesia. Applied Economics, 57(32), 4723–4738. https://doi.org/10.1080/00036846.2024.2364090
  35. Vranken, E., & Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1), 32–37. https://doi.org/10.2527/af.2017.0106
  36. Warman, A. T., Atmoko, B. A., Ibrahim, A., Baliarti, E., & Panjono. (2023). Breeding profile and reproductive performance of beef cattle kept by smallholder farmers in Monta District, Bima Regency, Indonesia. Multidisciplinary Reviews, 6(2). https://doi.org/10.31893/multirev.2023012
  37. Zhang, M., Wang, X., Feng, H., Huang, Q., Xiao, X., & Zhang, X. (2021). Wearable Internet of Things enabled precision livestock farming in smart farms: A review of technical solutions for precise perception, biocompatibility, and sustainability monitoring. Journal of Cleaner Production, 312(May), 127712. https://doi.org/10.1016/j.jclepro.2021.127712